Dephasing Dynamics in a Non-Equilibrium Fluctuating Environment

被引:2
|
作者
Meng, Xiangjia [1 ,2 ]
Sun, Yaxin [3 ]
Wang, Qinglong [3 ]
Ren, Jing [3 ]
Cai, Xiangji [3 ]
Czerwinski, Artur [4 ]
机构
[1] Shandong Youth Univ Polit Sci, Sch Informat Engn, Jinan 250103, Peoples R China
[2] Shandong Youth Univ Polit Sci, New Technol Res & Dev Ctr Intelligent Informat Con, Jinan 250103, Peoples R China
[3] Shandong Jianzhu Univ, Sch Sci, Jinan 250101, Peoples R China
[4] Nicolaus Copernicus Univ Torun, Inst Phys, Fac Phys Astron & Intypeat, ul Grudziadzka 5, PL-87100 Torun, Poland
基金
中国国家自然科学基金;
关键词
open quantum systems; decoherence; non-equilibrium environmental fluctuations; QUANTUM; DECOHERENCE;
D O I
10.3390/e25040634
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We performed a theoretical study of the dephasing dynamics of a quantum two-state system under the influences of a non-equilibrium fluctuating environment. The effect of the environmental non-equilibrium fluctuations on the quantum system is described by a generalized random telegraph noise (RTN) process, of which the statistical properties are both non-stationary and non-Markovian. Due to the time-homogeneous property in the master equations for the multi-time probability distribution, the decoherence factor induced by the generalized RTN with a modulatable-type memory kernel can be exactly derived by means of a closed fourth-order differential equation with respect to time. In some special limit cases, the decoherence factor recovers to the expression of the previous ones. We analyzed in detail the environmental effect of memory modulation in the dynamical dephasing in four types of dynamics regimes. The results showed that the dynamical dephasing of the quantum system and the conversion between the Markovian and non-Markovian characters in the dephasing dynamics under the influence of the generalized RTN can be effectively modulated via the environmental memory kernel.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Non-equilibrium length in granular fluids: From experiment to fluctuating hydrodynamics
    Gradenigo, G.
    Sarracino, A.
    Villamaina, D.
    Puglisi, A.
    EPL, 2011, 96 (01)
  • [32] On computing non-equilibrium dynamics following a quench
    Robinson, Neil
    de Klerk, Albertus J. J. M.
    Caux, Jean-Sebastien
    SCIPOST PHYSICS, 2021, 11 (06):
  • [33] Irrationality, Non-equilibrium Conflict and Complex Dynamics
    Gangopadhyay, Partha
    PEACE ECONOMICS PEACE SCIENCE AND PUBLIC POLICY, 2007, 13 (02)
  • [34] STATIONARY STAGE OF NON-EQUILIBRIUM DYNAMICS OF ADSORPTION
    ZOLOTARE.PP
    KALINICH.AI
    DOKLADY AKADEMII NAUK SSSR, 1971, 199 (05): : 1098 - &
  • [35] Non-equilibrium dynamics from RPMD and CMD
    Welsch, Ralph
    Song, Kai
    Shi, Qiang
    Althorpe, Stuart C.
    Miller, Thomas F., III
    JOURNAL OF CHEMICAL PHYSICS, 2016, 145 (20):
  • [36] On multiscale non-equilibrium molecular dynamics simulations
    Li, Shaofan
    Sheng, Ni
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 83 (8-9) : 998 - 1038
  • [37] On non-equilibrium molecular dynamics with Euclidean objectivity
    Zidong Yang
    James D. Lee
    I-Shih Liu
    Azim Eskandarian
    Acta Mechanica, 2017, 228 : 693 - 710
  • [38] Equilibrium and non-equilibrium dynamics in random-energy landscapes
    Maass, P
    Rinn, B
    PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 2001, 81 (09): : 1249 - 1261
  • [39] Theorems on Entanglement Typicality in Non-equilibrium Dynamics
    Yamaguchi, Koji
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2019, 88 (06)
  • [40] Critical slowdown of non-equilibrium polaron dynamics
    Nielsen, K. Knakkergaard
    Ardila, L. A. Pena
    Bruun, G. M.
    Pohl, T.
    NEW JOURNAL OF PHYSICS, 2019, 21 (04):