Dephasing Dynamics in a Non-Equilibrium Fluctuating Environment

被引:2
|
作者
Meng, Xiangjia [1 ,2 ]
Sun, Yaxin [3 ]
Wang, Qinglong [3 ]
Ren, Jing [3 ]
Cai, Xiangji [3 ]
Czerwinski, Artur [4 ]
机构
[1] Shandong Youth Univ Polit Sci, Sch Informat Engn, Jinan 250103, Peoples R China
[2] Shandong Youth Univ Polit Sci, New Technol Res & Dev Ctr Intelligent Informat Con, Jinan 250103, Peoples R China
[3] Shandong Jianzhu Univ, Sch Sci, Jinan 250101, Peoples R China
[4] Nicolaus Copernicus Univ Torun, Inst Phys, Fac Phys Astron & Intypeat, ul Grudziadzka 5, PL-87100 Torun, Poland
基金
中国国家自然科学基金;
关键词
open quantum systems; decoherence; non-equilibrium environmental fluctuations; QUANTUM; DECOHERENCE;
D O I
10.3390/e25040634
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We performed a theoretical study of the dephasing dynamics of a quantum two-state system under the influences of a non-equilibrium fluctuating environment. The effect of the environmental non-equilibrium fluctuations on the quantum system is described by a generalized random telegraph noise (RTN) process, of which the statistical properties are both non-stationary and non-Markovian. Due to the time-homogeneous property in the master equations for the multi-time probability distribution, the decoherence factor induced by the generalized RTN with a modulatable-type memory kernel can be exactly derived by means of a closed fourth-order differential equation with respect to time. In some special limit cases, the decoherence factor recovers to the expression of the previous ones. We analyzed in detail the environmental effect of memory modulation in the dynamical dephasing in four types of dynamics regimes. The results showed that the dynamical dephasing of the quantum system and the conversion between the Markovian and non-Markovian characters in the dephasing dynamics under the influence of the generalized RTN can be effectively modulated via the environmental memory kernel.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Non-equilibrium dephasing in ballistic interferometers
    Yamauchi, Y.
    Hashisaka, M.
    Nakamura, S.
    Chida, K.
    Kasai, S.
    Ono, T.
    Leturcq, R.
    Ensslin, K.
    Driscoll, D. C.
    Gossard, A. C.
    Kobayashi, K.
    16TH INTERNATIONAL CONFERENCE ON ELECTRON DYNAMICS IN SEMICONDUCTORS, OPTOELECTRONICS AND NANOSTRUCTURES (EDISON 16), 2009, 193
  • [2] Mass and Thermodiffusion in Non-equilibrium Fluctuating Hydrodynamics
    Sengers, Jan V.
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2024, 45 (09)
  • [3] Non-equilibrium thermodynamics of diffusion in fluctuating potentials
    Alston, Henry
    Cocconi, Luca
    Bertrand, Thibault
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (27)
  • [4] Entropy production in non-equilibrium fluctuating hydrodynamics
    Gradenigo, Giacomo
    Puglisi, Andrea
    Sarracino, Alessandro
    JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (01):
  • [5] Non-equilibrium current and relaxation dynamics of a charge-fluctuating quantum dot
    Karrasch, C.
    Andergassen, S.
    Pletyukhov, M.
    Schuricht, D.
    Borda, L.
    Meden, V.
    Schoeller, H.
    EPL, 2010, 90 (03)
  • [6] Quantum non-equilibrium dynamics of Rydberg gases in the presence of dephasing noise of different strengths
    Levi, Emanuele
    Gutierrez, Ricardo
    Lesanovsky, Igor
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2016, 49 (18)
  • [7] INFLATION AND NON-EQUILIBRIUM DYNAMICS
    PI, SY
    ANNALS OF PHYSICS, 1989, 192 (02) : 421 - 431
  • [8] INFLATION AND NON-EQUILIBRIUM DYNAMICS
    PI, SY
    PHYSICA A, 1989, 158 (01): : 366 - 376
  • [9] Non-equilibrium molecular dynamics of nanojet injection in a high pressure environment
    Shin, Hyun-ho
    Suh, Donguk
    Yoon, Woong-sup
    MICROFLUIDICS AND NANOFLUIDICS, 2008, 5 (04) : 561 - 570
  • [10] Stochastic pumping of non-equilibrium steady-states: how molecules adapt to a fluctuating environment
    Astumian, R. D.
    CHEMICAL COMMUNICATIONS, 2018, 54 (05) : 427 - 444