A Deep Learning-Based Downscaling Method Considering the Impact on Typhoons to Future Precipitation in Taiwan

被引:0
|
作者
Lin, Shiu-Shin [1 ]
Zhu, Kai-Yang [1 ]
Wang, Chen-Yu [1 ]
机构
[1] Chung Yuan Christian Univ, Coll Engn, Dept Civil Engn, Taoyuan City 320314, Taiwan
关键词
IPCC Fifth Assessment Report; climate change; deep neural network; typhoon; uncertainty; kernel principal component analysis; CLIMATE-CHANGE; MODEL;
D O I
10.3390/atmos15030371
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study proposes a deep neural network (DNN)-based downscaling model incorporating kernel principal component analysis (KPCA) to investigate the precipitation uncertainty influenced by typhoons in Taiwan, which has a complex island topography. The best tracking data of tropical cyclones from the Joint Typhoon Warning Center (JTWC) are utilized to calculate typhoon and non-typhoon precipitation. KPCA is applied to extract nonlinear features of the BCC-CSM1-1 (Beijing Climate Center Climate System Model version 1.1) and CanESM2 (second-generation Canadian Earth System Model) GCM models. The length of the data used in the two GCM models span from January 1950 to December 2005 (historical data) and from January 2006 to December 2099 (scenario out data). The rainfall data are collected from the weather stations in Taichung and Hualien (cities of Taiwan) operated by the Central Weather Administration (CWA), Taiwan. The period of rainfall data in Taichung and in Hualien spans from January 1950 to December 2005. The proposed model is constructed with features extracted from the GCMs and historical monthly precipitation from Taichung and Hualien. The model we have built is used to estimate monthly precipitation and uncertainty in both Taichung and Hualien for future scenarios (rcp 4.5 and 8.5) of the GCMs. The results suggest that, in Taichung and Hualien, the summer precipitation is mostly within the normal range. The rainfall in the long term (January 2071 to December 2080) for both Taichung and Hualien typically fall between 100 mm and 200 mm. In the long term, the dry season (January to April, November, and December) precipitation for Taichung and that in the wet season (May to October) for Hualien are less and more affected by typhoons, respectively. The dry season precipitation is more affected by typhoons in Taichung than Hualien. In both Taichung and Hualien, the long-term probability of rainfall exceeding the historical average in the dry season is higher than that in the wet season.
引用
收藏
页数:18
相关论文
共 50 条
  • [11] Uncertainty Quantification of Deep Learning-Based Statistical Downscaling of Climatic Parameters
    Nourani, Vahid
    Khodkar, Kasra
    Baghanam, Aida Hosseini
    Kantoush, Sameh Ahmed
    Demird, Ibrahim
    JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2023, 62 (09) : 1223 - 1242
  • [12] A Deep Learning-Based Methodology for Precipitation Nowcasting With Radar
    Chen, Lei
    Cao, Yuan
    Ma, Leiming
    Zhang, Junping
    EARTH AND SPACE SCIENCE, 2020, 7 (02)
  • [13] Deep learning-based impact mitigation method for UWB NLOS propagation
    Liu W.
    Wei G.
    Gao C.
    Yu X.
    Tan Z.
    Zhang C.
    Hou C.
    Zhu X.
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2023, 52 (12):
  • [14] Deep Reinforcement Learning-Based Distribution Network Planning Method Considering Renewable Energy
    Ma, Liang
    Si, Chenyi
    Wang, Ke
    Luo, Jinshan
    Jiang, Shigong
    Song, Yi
    ENERGIES, 2025, 18 (05)
  • [15] Customized deep learning for precipitation bias correction and downscaling
    Wang, Fang
    Tian, Di
    Carroll, Mark
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2023, 16 (02) : 535 - 556
  • [16] On deep learning-based bias correction and downscaling of multiple climate models simulations
    Fang Wang
    Di Tian
    Climate Dynamics, 2022, 59 : 3451 - 3468
  • [17] On deep learning-based bias correction and downscaling of multiple climate models simulations
    Wang, Fang
    Tian, Di
    CLIMATE DYNAMICS, 2022, 59 (11-12) : 3451 - 3468
  • [18] Deep Learning-Based Scientific Document Summarization Considering Citation
    Divya Jyoti
    Dharmendra Prasad Mahato
    Jyoti Srivastava
    SN Computer Science, 6 (4)
  • [19] Deep Learning-Based Phase Unwrapping Method
    Li, Dongxu
    Xie, Xianming
    IEEE ACCESS, 2023, 11 : 85836 - 85851
  • [20] Hybrid deep learning downscaling of GCMs for climate impact assessment and future projections in Oman
    Zarei, Erfan
    Nikoo, Mohammad Reza
    Al-Rawas, Ghazi
    Nazari, Rouzbeh
    Chen, Mingjie
    Al Jahwari, Badar
    Al-Wardy, Malik
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2025, 376