Deep Learning-Based Phase Unwrapping Method

被引:5
|
作者
Li, Dongxu [1 ]
Xie, Xianming [2 ]
机构
[1] Guangxi Univ Sci & Technol, Sch Automat, Liuzhou 545006, Guangxi, Peoples R China
[2] Guangxi Univ Sci & Technol, Sch Elect Engn, Liuzhou 545006, Guangxi, Peoples R China
来源
IEEE ACCESS | 2023年 / 11卷
基金
中国国家自然科学基金;
关键词
Deep learning; noise evaluation; phase unwrapping; spatial and channel attention network; CONVOLUTIONAL NEURAL-NETWORK; UNSCENTED KALMAN FILTER; ALGORITHM; INTERFEROMETRY;
D O I
10.1109/ACCESS.2023.3303186
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A phase unwrapping method based on spatial and channel attention network is proposed to retrieve true phases from interferograms with various levels of noise. First, we propose a network that is suitable for unwrapping wrapped phase images. This network utilizes Deeplabv3+ as the backbone, adopts a serial-parallel atrous spatial pyramid pooling module, implements multi-scale skip connections between the encoder-decoder models, and fuses a convolutional block attention module. Second, datasets with different noise levels are used to train the network employing an existing noise level evaluation system, and the trained networks effectively handle the phase unwrapping for interferograms. Finally, the interferograms are unwrapped by the networks with the same noise level as the interferograms. The experimental results of phase unwrapping for interferograms fully verify the performance of this method.
引用
收藏
页码:85836 / 85851
页数:16
相关论文
共 50 条
  • [1] A Deep Learning-based Model for Phase Unwrapping
    Spoorthi, G. E.
    Gorthi, Subrahmanyam
    Gorthi, Rama Krishna Sai
    ELEVENTH INDIAN CONFERENCE ON COMPUTER VISION, GRAPHICS AND IMAGE PROCESSING (ICVGIP 2018), 2018,
  • [2] Deep Learning-Based Branch-Cut Method for InSAR Two-Dimensional Phase Unwrapping
    Zhou, Lifan
    Yu, Hanwen
    Lan, Yang
    Xing, Mengdao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [3] Branch-cut phase unwrapping method based on deep learning
    Tai M.
    Li W.
    Liu T.
    Huang T.
    Optik, 2023, 295
  • [4] A NOVEL LOSS FUNCTION FOR DEEP LEARNING-BASED ONE-STEP PHASE UNWRAPPING
    Ye, Xin
    Yu, Hanwen
    IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024, 2024, : 3498 - 3501
  • [5] DEEP LEARNING-BASED LIKELIHOOD PHASE UNWRAPPING FOR MULTI-BASELINE INSAR INTERFEROGRAMS
    Zhou, Lifan
    Yu, Hanwen
    Wang, Yong
    Xing, Mengdao
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5226 - 5229
  • [6] Deep learning phase-unwrapping method based on adaptive noise evaluation
    Xie, Xianming
    Tian, Xianhui
    Shou, Zhaoyu
    Zeng, Qingning
    Wang, Guofu
    Huang, Qingnan
    Qin, Mingwei
    Gao, Xi
    APPLIED OPTICS, 2022, 61 (23) : 6861 - 6870
  • [7] Multi task deep learning phase unwrapping method based on semantic segmentation
    Wang, Linlin
    Liang, Wenjie
    Guo, Wanyi
    Wang, Zhujun
    Wang, Chuanyun
    Gao, Qian
    JOURNAL OF OPTICS, 2024, 26 (11)
  • [8] Deep Learning-Based Virtual Phase Contrast Imaging Method
    Liu Zhongfa
    Yang Yizhe
    Fang Yu
    Wu Xiaojing
    Zhu Siwei
    Yang Yong
    ACTA OPTICA SINICA, 2021, 41 (22)
  • [9] Deep Learning-Based Virtual Phase Contrast Imaging Method
    Liu, Zhongfa
    Yang, Yizhe
    Fang, Yu
    Wu, Xiaojing
    Zhu, Siwei
    Yang, Yong
    Guangxue Xuebao/Acta Optica Sinica, 2021, 41 (22):
  • [10] The PHU-NET: A robust phase unwrapping method for MRI based on deep learning
    Zhou, Hongyu
    Cheng, Chuanli
    Peng, Hao
    Liang, Dong
    Liu, Xin
    Zheng, Hairong
    Zou, Chao
    MAGNETIC RESONANCE IN MEDICINE, 2021, 86 (06) : 3321 - 3333