Deep Learning-Based Phase Unwrapping Method

被引:5
|
作者
Li, Dongxu [1 ]
Xie, Xianming [2 ]
机构
[1] Guangxi Univ Sci & Technol, Sch Automat, Liuzhou 545006, Guangxi, Peoples R China
[2] Guangxi Univ Sci & Technol, Sch Elect Engn, Liuzhou 545006, Guangxi, Peoples R China
来源
IEEE ACCESS | 2023年 / 11卷
基金
中国国家自然科学基金;
关键词
Deep learning; noise evaluation; phase unwrapping; spatial and channel attention network; CONVOLUTIONAL NEURAL-NETWORK; UNSCENTED KALMAN FILTER; ALGORITHM; INTERFEROMETRY;
D O I
10.1109/ACCESS.2023.3303186
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A phase unwrapping method based on spatial and channel attention network is proposed to retrieve true phases from interferograms with various levels of noise. First, we propose a network that is suitable for unwrapping wrapped phase images. This network utilizes Deeplabv3+ as the backbone, adopts a serial-parallel atrous spatial pyramid pooling module, implements multi-scale skip connections between the encoder-decoder models, and fuses a convolutional block attention module. Second, datasets with different noise levels are used to train the network employing an existing noise level evaluation system, and the trained networks effectively handle the phase unwrapping for interferograms. Finally, the interferograms are unwrapped by the networks with the same noise level as the interferograms. The experimental results of phase unwrapping for interferograms fully verify the performance of this method.
引用
收藏
页码:85836 / 85851
页数:16
相关论文
共 50 条
  • [41] Deep Learning for InSAR Phase Filtering: An Optimized Framework for Phase Unwrapping
    Murdaca, Gianluca
    Rucci, Alessio
    Prati, Claudio
    REMOTE SENSING, 2022, 14 (19)
  • [42] A Novel Two-Stage Learning-Based Phase Unwrapping Algorithm via Multimodel Fusion
    Yan, Chao
    Li, Tao
    Gao, Yandong
    Li, Shijin
    Zhang, Xiang
    Zhang, Xuefei
    Zhang, Di
    Liu, Huiqin
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 7468 - 7479
  • [43] MoDL-PU: Model-Based Deep Learning for InSAR Phase Unwrapping
    Zhou, Lifan
    Yu, Hanwen
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [44] Dual-frequency phase unwrapping based on deep learning driven by simulation dataset
    Li, Ze
    Zhang, Wen
    Shan, Shuo
    Xu, Peng
    Liu, Jintao
    Wang, Jianhua
    Wang, Suzhen
    Yang, Yanxi
    OPTICS AND LASERS IN ENGINEERING, 2024, 178
  • [45] Pixel-wise phase unwrapping of fringe projection profilometry based on deep learning
    Huang, Wangwang
    Mei, Xuesong
    Fan, Zhengjie
    Jiang, Gedong
    Wang, Wenjun
    Zhang, Ruting
    MEASUREMENT, 2023, 220
  • [46] Unifying temporal phase unwrapping framework using deep learning
    Guo, Xinming
    Li, Yixuan
    Qian, Jiaming
    Che, Yuxuan
    Zuo, Chao
    Chen, Qian
    Lam, Edmund Y.
    Wang, Huai
    Feng, Shijie
    OPTICS EXPRESS, 2023, 31 (10) : 16659 - 16675
  • [47] One-step robust deep learning phase unwrapping
    Wang, Kaiqiang
    Li, Ying
    Qian Kemao
    Di, Jianglei
    Zhao, Jianlin
    OPTICS EXPRESS, 2019, 27 (10) : 15100 - 15115
  • [48] Deep learning-based method for microstructure-property linkage of dual-phase steel
    Ren, Da
    Wei, Xiaolu
    Wang, Chenchong
    Xu, Wei
    COMPUTATIONAL MATERIALS SCIENCE, 2023, 227
  • [49] Deep Learning-Based Phase Noise Compensation in Multicarrier Systems
    Mohammadian, Amirhossein
    Tellambura, Chintha
    Li, Geoffrey Ye
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (10) : 2110 - 2114
  • [50] Deep learning-based surgical phase recognition in laparoscopic cholecystectomy
    Yang, Hye Yeon
    Hong, Seung Soo
    Yoon, Jihun
    Park, Bokyung
    Yoon, Youngno
    Han, Dai Hoon
    Choi, Gi Hong
    Choi, Min-Kook
    Kim, Sung Hyun
    ANNALS OF HEPATO-BILIARY-PANCREATIC SURGERY, 2024, 28 (04) : 466 - 473