Customized deep learning for precipitation bias correction and downscaling

被引:25
|
作者
Wang, Fang [1 ]
Tian, Di [1 ]
Carroll, Mark [2 ]
机构
[1] Auburn Univ, Dept Crop Soil & Environm Sci, Auburn, AL 36849 USA
[2] NASA Goddard Space Flight Ctr, Computat & Informat Sci Technol Off, Greenbelt, MD 20771 USA
关键词
REANALYSIS; SATELLITE; MODEL; ENSEMBLE; DATASETS; TEMPERATURE; PRODUCTS; RUNOFF; RADAR; GAUGE;
D O I
10.5194/gmd-16-535-2023
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Systematic biases and coarse resolutions are major limitations of current precipitation datasets. Many deep learning (DL)-based studies have been conducted for precipitation bias correction and downscaling. However, it is still challenging for the current approaches to handle complex features of hourly precipitation, resulting in the incapability of reproducing small-scale features, such as extreme events. This study developed a customized DL model by incorporating customized loss functions, multitask learning and physically relevant covariates to bias correct and downscale hourly precipitation data. We designed six scenarios to systematically evaluate the added values of weighted loss functions, multitask learning, and atmospheric covariates compared to the regular DL and statistical approaches. The models were trained and tested using the Modern-era Retrospective Analysis for Research and Applications version 2 (MERRA2) reanalysis and the Stage IV radar observations over the northern coastal region of the Gulf of Mexico on an hourly time scale. We found that all the scenarios with weighted loss functions performed notably better than the other scenarios with conventional loss functions and a quantile mapping-based approach at hourly, daily, and monthly time scales as well as extremes. Multitask learning showed improved performance on capturing fine features of extreme events and accounting for atmospheric covariates highly improved model performance at hourly and aggregated time scales, while the improvement is not as large as from weighted loss functions. We show that the customized DL model can better downscale and bias correct hourly precipitation datasets and provide improved precipitation estimates at fine spatial and temporal resolutions where regular DL and statistical methods experience challenges.
引用
收藏
页码:535 / 556
页数:22
相关论文
共 50 条
  • [1] PreciDBPN: A customized deep learning approach for hourly precipitation downscaling in eastern China
    Xia, Hanmeng
    Wang, Kaicun
    ATMOSPHERIC RESEARCH, 2024, 311
  • [2] Deep Learning for Bias Correction of Satellite Retrievals of Orographic Precipitation
    Chen, Haonan
    Sun, Luyao
    Cifelli, Robert
    Xie, Pingping
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [3] A combined statistical bias correction and stochastic downscaling method for precipitation
    Volosciuk, Claudia
    Maraun, Douglas
    Vrac, Mathieu
    Widmann, Martin
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2017, 21 (03) : 1693 - 1719
  • [4] On the modern deep learning approaches for precipitation downscaling
    Kumar, Bipin
    Atey, Kaustubh
    Singh, Bhupendra Bahadur
    Chattopadhyay, Rajib
    Acharya, Nachiketa
    Singh, Manmeet
    Nanjundiah, Ravi S.
    Rao, Suryachandra A.
    EARTH SCIENCE INFORMATICS, 2023, 16 (2) : 1459 - 1472
  • [5] Deep Learning for Daily Precipitation and Temperature Downscaling
    Wang, Fang
    Tian, Di
    Lowe, Lisa
    Kalin, Latif
    Lehrter, John
    WATER RESOURCES RESEARCH, 2021, 57 (04)
  • [6] Multivariate bias correction and downscaling of climate models with trend-preserving deep learning
    Wang, Fang
    Tian, Di
    CLIMATE DYNAMICS, 2024, 62 (10) : 9651 - 9672
  • [7] On deep learning-based bias correction and downscaling of multiple climate models simulations
    Fang Wang
    Di Tian
    Climate Dynamics, 2022, 59 : 3451 - 3468
  • [8] On deep learning-based bias correction and downscaling of multiple climate models simulations
    Wang, Fang
    Tian, Di
    CLIMATE DYNAMICS, 2022, 59 (11-12) : 3451 - 3468
  • [9] On the modern deep learning approaches for precipitation downscaling
    Bipin Kumar
    Kaustubh Atey
    Bhupendra Bahadur Singh
    Rajib Chattopadhyay
    Nachiketa Acharya
    Manmeet Singh
    Ravi S. Nanjundiah
    Suryachandra A. Rao
    Earth Science Informatics, 2023, 16 : 1459 - 1472
  • [10] Downscaling Taiwan precipitation with a residual deep learning approach
    Hsu, Li-Huan
    Chiang, Chou-Chun
    Lin, Kuan-Ling
    Lin, Hsin-Hung
    Chu, Jung-Lien
    Yu, Yi-Chiang
    Fahn, Chin-Shyurng
    GEOSCIENCE LETTERS, 2024, 11 (01)