A Community Data Set for Comparing Automated Coronal Hole Detection Schemes

被引:2
|
作者
Reiss, Martin A. [1 ]
Muglach, Karin [2 ,3 ]
Mason, Emily [4 ]
Davies, Emma E. [5 ]
Chakraborty, Shibaji [6 ]
Delouille, Veronique [7 ]
Downs, Cooper [4 ]
Garton, Tadhg M. [8 ]
Grajeda, Jeremy A. [9 ]
Hamada, Amr [10 ,11 ]
Heinemann, Stephan G. [12 ]
Hofmeister, Stefan [13 ]
Illarionov, Egor [14 ,15 ]
Jarolim, Robert [16 ]
Krista, Larisza [17 ,18 ]
Lowder, Chris [19 ]
Verwichte, Erwin [20 ]
Arge, Charles N. [2 ]
Boucheron, Laura E. [9 ]
Foullon, Claire [21 ]
Kirk, Michael S. [2 ]
Kosovichev, Alexander [22 ,23 ,24 ]
Leisner, Andrew [25 ]
Moestl, Christian [5 ]
Turtle, James [4 ]
Veronig, Astrid [16 ]
机构
[1] NASA, NASA Goddard Space Flight Ctr, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA
[2] NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA
[3] Catholic Univ Amer, Washington, DC 20064 USA
[4] Predict Sci Inc, 9990 Mesa Rim Rd,Suite 170, San Diego, CA 92121 USA
[5] Austrian Space Weather Off, GeoSphere Austria, A-8020 Graz, Austria
[6] Ctr Space Sci & Engn Res, Virginia Tech, Blacksburg, VA USA
[7] Royal Observ Belgium, Brussels, Belgium
[8] Manakau Ltd, Dublin, Ireland
[9] New Mexico State Univ, Klipsch Sch Elect & Comp Engn, Las Cruces, NM 88003 USA
[10] Natl Solar Observ, Boulder, CO 80303 USA
[11] Univ Colorado, Boulder, CO 80309 USA
[12] Univ Helsinki, Dept Phys, POB 64, FI-00014 Helsinki, Finland
[13] Leibniz Inst Astrophys, Potsdam, Germany
[14] Moscow MV Lomonosov State Univ, Moscow 119991, Russia
[15] Moscow Ctr Fundamental & Appl Math, Moscow 119234, Russia
[16] Karl Franzens Univ Graz, Graz, Austria
[17] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
[18] NOAA, Natl Ctr Environm Informat, Boulder, CO 80305 USA
[19] Southwest Res Inst, Boulder, CO 80302 USA
[20] Univ Warwick, Dept Phys, Coventry CV4 7AL, England
[21] Univ Exeter, Dept Math & Stat, Exeter EX4 4QF, England
[22] New Jersey Inst Technol, Ctr Computat Heliophys, Newark, NJ 07102 USA
[23] New Jersey Inst Technol, Dept Phys, Newark, NJ 07102 USA
[24] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA
[25] George Mason Univ, Dept Phys & Astron, Fairfax, VA 22030 USA
来源
基金
奥地利科学基金会;
关键词
OPEN MAGNETIC-FLUX; ACTIVE REGIONS; EVOLUTION; EUV; SPEED; IMAGES; SEGMENTATION; ROTATION; MODEL; SUN;
D O I
10.3847/1538-4365/ad1408
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Automated detection schemes are nowadays the standard approach for locating coronal holes in extreme-UV images from the Solar Dynamics Observatory (SDO). However, factors such as the noisy nature of solar imagery, instrumental effects, and others make it challenging to identify coronal holes using these automated schemes. While discrepancies between detection schemes have been noted in the literature, a comprehensive assessment of these discrepancies is still lacking. The contribution of the Coronal Hole Boundary Working Team in the COSPAR ISWAT initiative to close this gap is threefold. First, we present the first community data set for comparing automated coronal hole detection schemes. This data set consists of 29 SDO images, all of which were selected by experienced observers to challenge automated schemes. Second, we use this community data set as input to 14 widely applied automated schemes to study coronal holes and collect their detection results. Third, we study three SDO images from the data set that exemplify the most important lessons learned from this effort. Our findings show that the choice of the automated detection scheme can have a significant effect on the physical properties of coronal holes, and we discuss the implications of these findings for open questions in solar and heliospheric physics. We envision that this community data set will serve the scientific community as a benchmark data set for future developments in the field.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Detection and tracking of coronal mass ejections based on supervised segmentation and level set
    Goussies, Norberto A.
    Mejail, Marta E.
    Jacobo, Julio
    Stenborg, Guillermo
    PATTERN RECOGNITION LETTERS, 2010, 31 (06) : 496 - 501
  • [42] Hypothesis testing for automated community detection in networks
    Bickel, Peter J.
    Sarkar, Purnamrita
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2016, 78 (01) : 253 - 273
  • [43] (Automated) Software Modularization Using Community Detection
    Hansen, Klaus Marius
    Manikas, Konstantinos
    SOFTWARE ARCHITECTURE (ECSA 2015), 2015, 9278 : 95 - 102
  • [44] Comparing Rough Set Theory with Multiple Regression Analysis as Automated Valuation Methodologies
    d'Amato, Maurizio
    INTERNATIONAL REAL ESTATE REVIEW, 2007, 10 (02): : 42 - 65
  • [45] Automated Detection of coronaL MAss Ejecta origiNs for Space Weather AppliCations (ALMANAC)
    Williams, Thomas
    Morgan, Huw
    SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2022, 20 (11):
  • [46] Automated Detection of Coronal Loops Using a Wavelet Transform Modulus Maxima Method
    R. T. James McAteer
    Pierre Kestener
    Alain Arneodo
    Andre Khalil
    Solar Physics, 2010, 262 : 387 - 397
  • [47] Automated detection of EUV Polar Coronal Holes during Solar Cycle 23
    M. S. Kirk
    W. D. Pesnell
    C. A. Young
    S. A. Hess Webber
    Solar Physics, 2009, 257 : 99 - 112
  • [48] Hole detection in a planar point set: An empty disk approach
    Methirumangalath, Subhasree
    Kannan, Shyam Sundar
    Parakkat, Amal Dev
    Muthuganapathy, Ramanathan
    COMPUTERS & GRAPHICS-UK, 2017, 66 : 124 - 134
  • [49] Automated detection of EUV Polar Coronal Holes during Solar Cycle 23
    Kirk, M. S.
    Pesnell, W. D.
    Young, C. A.
    Webber, S. A. Hess
    SOLAR PHYSICS, 2009, 257 (01) : 99 - 112
  • [50] Automated Detection of Coronal Loops Using a Wavelet Transform Modulus Maxima Method
    McAteer, R. T. James
    Kestener, Pierre
    Arneodo, Alain
    Khalil, Andre
    SOLAR PHYSICS, 2010, 262 (02) : 387 - 397