A Community Data Set for Comparing Automated Coronal Hole Detection Schemes

被引:2
|
作者
Reiss, Martin A. [1 ]
Muglach, Karin [2 ,3 ]
Mason, Emily [4 ]
Davies, Emma E. [5 ]
Chakraborty, Shibaji [6 ]
Delouille, Veronique [7 ]
Downs, Cooper [4 ]
Garton, Tadhg M. [8 ]
Grajeda, Jeremy A. [9 ]
Hamada, Amr [10 ,11 ]
Heinemann, Stephan G. [12 ]
Hofmeister, Stefan [13 ]
Illarionov, Egor [14 ,15 ]
Jarolim, Robert [16 ]
Krista, Larisza [17 ,18 ]
Lowder, Chris [19 ]
Verwichte, Erwin [20 ]
Arge, Charles N. [2 ]
Boucheron, Laura E. [9 ]
Foullon, Claire [21 ]
Kirk, Michael S. [2 ]
Kosovichev, Alexander [22 ,23 ,24 ]
Leisner, Andrew [25 ]
Moestl, Christian [5 ]
Turtle, James [4 ]
Veronig, Astrid [16 ]
机构
[1] NASA, NASA Goddard Space Flight Ctr, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA
[2] NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA
[3] Catholic Univ Amer, Washington, DC 20064 USA
[4] Predict Sci Inc, 9990 Mesa Rim Rd,Suite 170, San Diego, CA 92121 USA
[5] Austrian Space Weather Off, GeoSphere Austria, A-8020 Graz, Austria
[6] Ctr Space Sci & Engn Res, Virginia Tech, Blacksburg, VA USA
[7] Royal Observ Belgium, Brussels, Belgium
[8] Manakau Ltd, Dublin, Ireland
[9] New Mexico State Univ, Klipsch Sch Elect & Comp Engn, Las Cruces, NM 88003 USA
[10] Natl Solar Observ, Boulder, CO 80303 USA
[11] Univ Colorado, Boulder, CO 80309 USA
[12] Univ Helsinki, Dept Phys, POB 64, FI-00014 Helsinki, Finland
[13] Leibniz Inst Astrophys, Potsdam, Germany
[14] Moscow MV Lomonosov State Univ, Moscow 119991, Russia
[15] Moscow Ctr Fundamental & Appl Math, Moscow 119234, Russia
[16] Karl Franzens Univ Graz, Graz, Austria
[17] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
[18] NOAA, Natl Ctr Environm Informat, Boulder, CO 80305 USA
[19] Southwest Res Inst, Boulder, CO 80302 USA
[20] Univ Warwick, Dept Phys, Coventry CV4 7AL, England
[21] Univ Exeter, Dept Math & Stat, Exeter EX4 4QF, England
[22] New Jersey Inst Technol, Ctr Computat Heliophys, Newark, NJ 07102 USA
[23] New Jersey Inst Technol, Dept Phys, Newark, NJ 07102 USA
[24] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA
[25] George Mason Univ, Dept Phys & Astron, Fairfax, VA 22030 USA
来源
基金
奥地利科学基金会;
关键词
OPEN MAGNETIC-FLUX; ACTIVE REGIONS; EVOLUTION; EUV; SPEED; IMAGES; SEGMENTATION; ROTATION; MODEL; SUN;
D O I
10.3847/1538-4365/ad1408
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Automated detection schemes are nowadays the standard approach for locating coronal holes in extreme-UV images from the Solar Dynamics Observatory (SDO). However, factors such as the noisy nature of solar imagery, instrumental effects, and others make it challenging to identify coronal holes using these automated schemes. While discrepancies between detection schemes have been noted in the literature, a comprehensive assessment of these discrepancies is still lacking. The contribution of the Coronal Hole Boundary Working Team in the COSPAR ISWAT initiative to close this gap is threefold. First, we present the first community data set for comparing automated coronal hole detection schemes. This data set consists of 29 SDO images, all of which were selected by experienced observers to challenge automated schemes. Second, we use this community data set as input to 14 widely applied automated schemes to study coronal holes and collect their detection results. Third, we study three SDO images from the data set that exemplify the most important lessons learned from this effort. Our findings show that the choice of the automated detection scheme can have a significant effect on the physical properties of coronal holes, and we discuss the implications of these findings for open questions in solar and heliospheric physics. We envision that this community data set will serve the scientific community as a benchmark data set for future developments in the field.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Comparison of Lesion Detection in the Transverse and Coronal Views on Automated Breast Sonography
    Chae, Eun Young
    Cha, Joo Hee
    Kim, Hak Hee
    Shin, Hee Jung
    JOURNAL OF ULTRASOUND IN MEDICINE, 2015, 34 (01) : 125 - 135
  • [32] The automated detection algorithm of coronal loop and statistical analysis of its width
    Song, Zhiming
    Li, Hongbo
    Qu, Zhongquan
    CHINESE SCIENCE BULLETIN-CHINESE, 2020, 65 (08): : 704 - 717
  • [33] Automated hole expansion test with pneumatic crack detection
    Leonhardt, A.
    Kraeusel, V.
    Paar, U.
    21ST CHEMNITZ SEMINAR ON MATERIALS ENGINEERING, 2019, 480
  • [34] Comparing task and data parallel excecution schemes for the DIIRK method
    Rauber, Thomas
    Runger, Gudula
    Lecture Notes in Computer Science, 1996, 1124
  • [35] Improvements on coronal hole detection in SDO/AIA images using supervised classification
    Reiss, Martin A.
    Hofmeister, Stefan J.
    De Visscher, Ruben
    Temmer, Manuela
    Veronig, Astrid M.
    Delouille, VRonique
    Mampaey, Benjamin
    Ahammer, Helmut
    JOURNAL OF SPACE WEATHER AND SPACE CLIMATE, 2015, 5
  • [36] Evaluating and comparing the igraph community detection algorithms
    de Sousa, Fabiano Berardo
    Zhao, Liang
    2014 BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2014, : 408 - 413
  • [37] Automated Syndrome Detection in a Set of Clinical Facial Photographs
    Boehringer, Stefan
    Guenther, Manuel
    Sinigerova, Stella
    Wurtz, Rolf P.
    Horsthemke, Bernhard
    Wieczorek, Dagmar
    AMERICAN JOURNAL OF MEDICAL GENETICS PART A, 2011, 155A (09) : 2161 - 2169
  • [38] Data-Driven Classification of Coronal Hole and Streamer Belt Solar Wind
    Bloch, Teo
    Watt, Clare
    Owens, Mathew
    McInnes, Leland
    Macneil, Allan R.
    SOLAR PHYSICS, 2020, 295 (03)
  • [39] Data-Driven Classification of Coronal Hole and Streamer Belt Solar Wind
    Téo Bloch
    Clare Watt
    Mathew Owens
    Leland McInnes
    Allan R. Macneil
    Solar Physics, 2020, 295
  • [40] A Comparison Of Emotion Annotation Schemes And A New Annotated Data Set
    Wood, Ian D.
    McCrae, John P.
    Andryushechkin, Vladimir
    Buitelaar, Paul
    PROCEEDINGS OF THE ELEVENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2018), 2018, : 1197 - 1202