A Community Data Set for Comparing Automated Coronal Hole Detection Schemes

被引:2
|
作者
Reiss, Martin A. [1 ]
Muglach, Karin [2 ,3 ]
Mason, Emily [4 ]
Davies, Emma E. [5 ]
Chakraborty, Shibaji [6 ]
Delouille, Veronique [7 ]
Downs, Cooper [4 ]
Garton, Tadhg M. [8 ]
Grajeda, Jeremy A. [9 ]
Hamada, Amr [10 ,11 ]
Heinemann, Stephan G. [12 ]
Hofmeister, Stefan [13 ]
Illarionov, Egor [14 ,15 ]
Jarolim, Robert [16 ]
Krista, Larisza [17 ,18 ]
Lowder, Chris [19 ]
Verwichte, Erwin [20 ]
Arge, Charles N. [2 ]
Boucheron, Laura E. [9 ]
Foullon, Claire [21 ]
Kirk, Michael S. [2 ]
Kosovichev, Alexander [22 ,23 ,24 ]
Leisner, Andrew [25 ]
Moestl, Christian [5 ]
Turtle, James [4 ]
Veronig, Astrid [16 ]
机构
[1] NASA, NASA Goddard Space Flight Ctr, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA
[2] NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA
[3] Catholic Univ Amer, Washington, DC 20064 USA
[4] Predict Sci Inc, 9990 Mesa Rim Rd,Suite 170, San Diego, CA 92121 USA
[5] Austrian Space Weather Off, GeoSphere Austria, A-8020 Graz, Austria
[6] Ctr Space Sci & Engn Res, Virginia Tech, Blacksburg, VA USA
[7] Royal Observ Belgium, Brussels, Belgium
[8] Manakau Ltd, Dublin, Ireland
[9] New Mexico State Univ, Klipsch Sch Elect & Comp Engn, Las Cruces, NM 88003 USA
[10] Natl Solar Observ, Boulder, CO 80303 USA
[11] Univ Colorado, Boulder, CO 80309 USA
[12] Univ Helsinki, Dept Phys, POB 64, FI-00014 Helsinki, Finland
[13] Leibniz Inst Astrophys, Potsdam, Germany
[14] Moscow MV Lomonosov State Univ, Moscow 119991, Russia
[15] Moscow Ctr Fundamental & Appl Math, Moscow 119234, Russia
[16] Karl Franzens Univ Graz, Graz, Austria
[17] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
[18] NOAA, Natl Ctr Environm Informat, Boulder, CO 80305 USA
[19] Southwest Res Inst, Boulder, CO 80302 USA
[20] Univ Warwick, Dept Phys, Coventry CV4 7AL, England
[21] Univ Exeter, Dept Math & Stat, Exeter EX4 4QF, England
[22] New Jersey Inst Technol, Ctr Computat Heliophys, Newark, NJ 07102 USA
[23] New Jersey Inst Technol, Dept Phys, Newark, NJ 07102 USA
[24] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA
[25] George Mason Univ, Dept Phys & Astron, Fairfax, VA 22030 USA
来源
基金
奥地利科学基金会;
关键词
OPEN MAGNETIC-FLUX; ACTIVE REGIONS; EVOLUTION; EUV; SPEED; IMAGES; SEGMENTATION; ROTATION; MODEL; SUN;
D O I
10.3847/1538-4365/ad1408
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Automated detection schemes are nowadays the standard approach for locating coronal holes in extreme-UV images from the Solar Dynamics Observatory (SDO). However, factors such as the noisy nature of solar imagery, instrumental effects, and others make it challenging to identify coronal holes using these automated schemes. While discrepancies between detection schemes have been noted in the literature, a comprehensive assessment of these discrepancies is still lacking. The contribution of the Coronal Hole Boundary Working Team in the COSPAR ISWAT initiative to close this gap is threefold. First, we present the first community data set for comparing automated coronal hole detection schemes. This data set consists of 29 SDO images, all of which were selected by experienced observers to challenge automated schemes. Second, we use this community data set as input to 14 widely applied automated schemes to study coronal holes and collect their detection results. Third, we study three SDO images from the data set that exemplify the most important lessons learned from this effort. Our findings show that the choice of the automated detection scheme can have a significant effect on the physical properties of coronal holes, and we discuss the implications of these findings for open questions in solar and heliospheric physics. We envision that this community data set will serve the scientific community as a benchmark data set for future developments in the field.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Fuzzy energy-based dual contours model for automated coronal hole detection in SDO/AIA solar disk images
    Bandyopadhyay, Sanmoy
    Das, Saurabh
    Datta, Abhirup
    ADVANCES IN SPACE RESEARCH, 2020, 65 (10) : 2435 - 2455
  • [22] SYNCHRONIC CORONAL HOLE MAPPING USING MULTI-INSTRUMENT EUV IMAGES: DATA PREPARATION AND DETECTION METHOD
    Caplan, R. M.
    Downs, C.
    Linker, J. A.
    ASTROPHYSICAL JOURNAL, 2016, 823 (01):
  • [23] Automated iBeacon-Based Community Detection: A Data-Driven Approach
    Lee, Jeongran
    Akyamac, Ahmet A.
    Phadke, Chitra
    Uzunalioglu, Huseyin
    2018 IEEE 29TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS (PIMRC), 2018, : 1759 - 1765
  • [24] Comparing Clustering Algorithms On Wisconsin Data Set
    Erken, Mucahit
    2016 24TH SIGNAL PROCESSING AND COMMUNICATION APPLICATION CONFERENCE (SIU), 2016, : 1541 - 1544
  • [25] Automated coronal hole segmentation from Solar EUV Images using the watershed transform
    Ciecholewski, Marcin
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2015, 33 : 203 - 218
  • [26] Prediction of coronal-hole solar wind velocities at Ulysses from NSO/SP coronal data
    Altrock, RC
    Henry, TW
    SOLAR DRIVERS OF INTERPLANETARY AND TERRESTRIAL DISTURBANCES, 1996, 95 : 324 - 332
  • [27] Multi-channel coronal hole detection with convolutional neural networks
    Jarolim, R.
    Veronig, A. M.
    Hofmeister, S.
    Heinemann, S. G.
    Temmer, M.
    Podladchikova, T.
    Dissauer, K.
    ASTRONOMY & ASTROPHYSICS, 2021, 652
  • [28] Search Techniques for Automated Proposal of Data Mining Schemes
    Neruda, Roman
    APPLIED COMPUTER SCIENCES IN ENGINEERING, 2016, 657 : 84 - 90
  • [29] A data set of a Norwegian energy community
    Berg, Kjersti
    Loschenbrand, Markus
    DATA IN BRIEF, 2022, 40
  • [30] Community Detection On Citation Network Of DBLP Data Sample Set Using LinkRank Algorithm
    Yudhoatmojo, Satrio Baskoro
    Samuar, Muhammad Arvin
    4TH INFORMATION SYSTEMS INTERNATIONAL CONFERENCE (ISICO 2017), 2017, 124 : 29 - 37