Quasiparticles of decoherence processes in open quantum many-body systems: Incoherentons

被引:8
|
作者
Haga, Taiki [1 ]
Nakagawa, Masaya [2 ]
Hamazaki, Ryusuke [3 ]
Ueda, Masahito [2 ,4 ,5 ]
机构
[1] Osaka Metropolitan Univ, Dept Phys & Elect, Sakai, Osaka 5998531, Japan
[2] Univ Tokyo, Dept Phys, 7-3-1 Hongo,Bunkyo Ku, Tokyo 1130033, Japan
[3] RIKEN iTHEMS, RIKEN Cluster Pioneering Res CPR, Nonequilibrium Quantum Stat Mech RIKEN Hakubi Res, Wako, Saitama 3510198, Japan
[4] RIKEN Ctr Emergent Matter Sci CEMS, Wako, Saitama 3510198, Japan
[5] Univ Tokyo, Inst Phys Intelligence, 7-3-1 Hongo,Bunkyo Ku, Tokyo 1130033, Japan
来源
PHYSICAL REVIEW RESEARCH | 2023年 / 5卷 / 04期
基金
日本科学技术振兴机构;
关键词
HUBBARD-MODEL; BETHE-ANSATZ; COHERENT; TRANSITION; ENTANGLEMENT; COMPLETENESS; CROSSOVER; DYNAMICS; PHYSICS; STATES;
D O I
10.1103/PhysRevResearch.5.043225
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The relaxation dynamics of an open quantum system is determined by the competition between the coherent Hamiltonian dynamics of a system and the dissipative dynamics due to interactions with environments. It is therefore of fundamental interest to understand the transition from the coherent to incoherent regimes. We find that hitherto unrecognized quasiparticles-incoherentons-describe this coherent-to-incoherent transition in eigenmodes of a Liouvillian superoperator that governs the dynamics of an open quantum many-body system. Here, an incoherenton is defined as an interchain bound state in an auxiliary ladder system that represents the density matrix of a system. The Liouvillian eigenmodes are classified into groups with different decay rates that reflect the number of incoherentons involved therein. We also introduce a spectral gap-quantum coherence gap-that separates the different groups of eigenmodes. We demonstrate the existence of incoherentons in a lattice boson model subject to dephasing, and show that the quantum coherence gap closes when incoherentons are deconfined, which signals a dynamical transition from incoherent relaxation with exponential decay to coherent oscillatory relaxation. Furthermore, we discuss how the decoherence dynamics of quantum many-body systems can be understood in terms of the generation, localization, and diffusion of incoherentons.
引用
收藏
页数:29
相关论文
共 50 条
  • [41] NON-LINEAR QUANTUM DYNAMICAL SEMIGROUPS FOR MANY-BODY OPEN SYSTEMS
    ALICKI, R
    MESSER, J
    JOURNAL OF STATISTICAL PHYSICS, 1983, 32 (02) : 299 - 312
  • [42] Fluctuations and Stochastic Processes in One-Dimensional Many-Body Quantum Systems
    Stimming, H. -P.
    Mauser, N. J.
    Schmiedmayer, J.
    Mazets, I. E.
    PHYSICAL REVIEW LETTERS, 2010, 105 (01)
  • [43] Randomness of Eigenstates of Many-Body Quantum Systems
    Sun, Li-Zhen
    Nie, Qingmiao
    Li, Haibin
    ENTROPY, 2019, 21 (03):
  • [44] THERMODYNAMICAL PROPERTIES OF QUANTUM MANY-BODY SYSTEMS
    GAGLIANO, ER
    BACCI, S
    PHYSICAL REVIEW LETTERS, 1989, 62 (10) : 1154 - 1156
  • [45] Quantum many-body systems out of equilibrium
    Eisert, J.
    Friesdorf, M.
    Gogolin, C.
    NATURE PHYSICS, 2015, 11 (02) : 124 - 130
  • [46] Thermodynamics of quantum dissipative many-body systems
    Cuccoli, A
    Fubini, A
    Tognetti, V
    Vaia, R
    PHYSICAL REVIEW E, 1999, 60 (01): : 231 - 241
  • [47] Entropy Minimization for Many-Body Quantum Systems
    Duboscq, Romain
    Pinaud, Olivier
    JOURNAL OF STATISTICAL PHYSICS, 2021, 185 (01)
  • [48] Quantum effects in many-body gravitating systems
    Golovko, VA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (29): : 6431 - 6446
  • [49] Effective Lagrangians for quantum many-body systems
    Jens O. Andersen
    Tomáš Brauner
    Christoph P. Hofmann
    Aleksi Vuorinen
    Journal of High Energy Physics, 2014
  • [50] Irreversible dynamics in quantum many-body systems
    Schmitt, Markus
    Kehrein, Stefan
    PHYSICAL REVIEW B, 2018, 98 (18)