Quasiparticles of decoherence processes in open quantum many-body systems: Incoherentons

被引:8
|
作者
Haga, Taiki [1 ]
Nakagawa, Masaya [2 ]
Hamazaki, Ryusuke [3 ]
Ueda, Masahito [2 ,4 ,5 ]
机构
[1] Osaka Metropolitan Univ, Dept Phys & Elect, Sakai, Osaka 5998531, Japan
[2] Univ Tokyo, Dept Phys, 7-3-1 Hongo,Bunkyo Ku, Tokyo 1130033, Japan
[3] RIKEN iTHEMS, RIKEN Cluster Pioneering Res CPR, Nonequilibrium Quantum Stat Mech RIKEN Hakubi Res, Wako, Saitama 3510198, Japan
[4] RIKEN Ctr Emergent Matter Sci CEMS, Wako, Saitama 3510198, Japan
[5] Univ Tokyo, Inst Phys Intelligence, 7-3-1 Hongo,Bunkyo Ku, Tokyo 1130033, Japan
来源
PHYSICAL REVIEW RESEARCH | 2023年 / 5卷 / 04期
基金
日本科学技术振兴机构;
关键词
HUBBARD-MODEL; BETHE-ANSATZ; COHERENT; TRANSITION; ENTANGLEMENT; COMPLETENESS; CROSSOVER; DYNAMICS; PHYSICS; STATES;
D O I
10.1103/PhysRevResearch.5.043225
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The relaxation dynamics of an open quantum system is determined by the competition between the coherent Hamiltonian dynamics of a system and the dissipative dynamics due to interactions with environments. It is therefore of fundamental interest to understand the transition from the coherent to incoherent regimes. We find that hitherto unrecognized quasiparticles-incoherentons-describe this coherent-to-incoherent transition in eigenmodes of a Liouvillian superoperator that governs the dynamics of an open quantum many-body system. Here, an incoherenton is defined as an interchain bound state in an auxiliary ladder system that represents the density matrix of a system. The Liouvillian eigenmodes are classified into groups with different decay rates that reflect the number of incoherentons involved therein. We also introduce a spectral gap-quantum coherence gap-that separates the different groups of eigenmodes. We demonstrate the existence of incoherentons in a lattice boson model subject to dephasing, and show that the quantum coherence gap closes when incoherentons are deconfined, which signals a dynamical transition from incoherent relaxation with exponential decay to coherent oscillatory relaxation. Furthermore, we discuss how the decoherence dynamics of quantum many-body systems can be understood in terms of the generation, localization, and diffusion of incoherentons.
引用
收藏
页数:29
相关论文
共 50 条
  • [21] QUANTUM THEORY OF MANY-BODY SYSTEMS
    HUGENHOLTZ, NM
    REPORTS ON PROGRESS IN PHYSICS, 1965, 28 : 201 - +
  • [22] QUANTUM SCALING IN MANY-BODY SYSTEMS
    CONTINENTINO, MA
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1994, 239 (03): : 179 - 213
  • [23] Tensor network approach to thermalization in open quantum many-body systems
    Nakano, Hayate
    Shirai, Tatsuhiko
    Mori, Takashi
    PHYSICAL REVIEW E, 2021, 103 (04)
  • [24] Disorder in Quantum Many-Body Systems
    Vojta, Thomas
    ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 10, 2019, 10 (01): : 233 - 252
  • [25] SYNTHETIC QUANTUM MANY-BODY SYSTEMS
    Guerlin, C.
    Baumann, K.
    Brennecke, F.
    Greif, D.
    Joerdens, R.
    Leinss, S.
    Strohmaier, N.
    Tarruell, L.
    Uehlinger, T.
    Moritz, H.
    Esslinger, T.
    LASER SPECTROSCOPY, 2010, : 212 - 221
  • [26] ERGODICITY OF QUANTUM MANY-BODY SYSTEMS
    JANNER, A
    HELVETICA PHYSICA ACTA, 1963, 36 (02): : 155 - &
  • [27] Seniority in quantum many-body systems
    Van Isacker, P.
    SYMMETRIES IN NATURE, 2010, 1323 : 141 - 152
  • [28] Negentropy in Many-Body Quantum Systems
    Quarati, Piero
    Lissia, Marcello
    Scarfone, Antonio M.
    ENTROPY, 2016, 18 (02)
  • [29] Typical Pure States and Nonequilibrium Processes in Quantum Many-Body Systems
    Monnai, Takaaki
    Sugita, Ayumu
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2014, 83 (09)
  • [30] Loschmidt echo as a robust decoherence quantifier for many-body systems
    Zangara, Pablo R.
    Dente, Axel D.
    Levstein, Patricia R.
    Pastawski, Horacio M.
    PHYSICAL REVIEW A, 2012, 86 (01):