Quasiparticles of decoherence processes in open quantum many-body systems: Incoherentons

被引:8
|
作者
Haga, Taiki [1 ]
Nakagawa, Masaya [2 ]
Hamazaki, Ryusuke [3 ]
Ueda, Masahito [2 ,4 ,5 ]
机构
[1] Osaka Metropolitan Univ, Dept Phys & Elect, Sakai, Osaka 5998531, Japan
[2] Univ Tokyo, Dept Phys, 7-3-1 Hongo,Bunkyo Ku, Tokyo 1130033, Japan
[3] RIKEN iTHEMS, RIKEN Cluster Pioneering Res CPR, Nonequilibrium Quantum Stat Mech RIKEN Hakubi Res, Wako, Saitama 3510198, Japan
[4] RIKEN Ctr Emergent Matter Sci CEMS, Wako, Saitama 3510198, Japan
[5] Univ Tokyo, Inst Phys Intelligence, 7-3-1 Hongo,Bunkyo Ku, Tokyo 1130033, Japan
来源
PHYSICAL REVIEW RESEARCH | 2023年 / 5卷 / 04期
基金
日本科学技术振兴机构;
关键词
HUBBARD-MODEL; BETHE-ANSATZ; COHERENT; TRANSITION; ENTANGLEMENT; COMPLETENESS; CROSSOVER; DYNAMICS; PHYSICS; STATES;
D O I
10.1103/PhysRevResearch.5.043225
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The relaxation dynamics of an open quantum system is determined by the competition between the coherent Hamiltonian dynamics of a system and the dissipative dynamics due to interactions with environments. It is therefore of fundamental interest to understand the transition from the coherent to incoherent regimes. We find that hitherto unrecognized quasiparticles-incoherentons-describe this coherent-to-incoherent transition in eigenmodes of a Liouvillian superoperator that governs the dynamics of an open quantum many-body system. Here, an incoherenton is defined as an interchain bound state in an auxiliary ladder system that represents the density matrix of a system. The Liouvillian eigenmodes are classified into groups with different decay rates that reflect the number of incoherentons involved therein. We also introduce a spectral gap-quantum coherence gap-that separates the different groups of eigenmodes. We demonstrate the existence of incoherentons in a lattice boson model subject to dephasing, and show that the quantum coherence gap closes when incoherentons are deconfined, which signals a dynamical transition from incoherent relaxation with exponential decay to coherent oscillatory relaxation. Furthermore, we discuss how the decoherence dynamics of quantum many-body systems can be understood in terms of the generation, localization, and diffusion of incoherentons.
引用
收藏
页数:29
相关论文
共 50 条
  • [31] Photon Subtraction by Many-Body Decoherence
    Murray, C. R.
    Mirgorodskiy, I.
    Tresp, C.
    Braun, C.
    Paris-Mandoki, A.
    Gorshkov, A. V.
    Hofferberth, S.
    Pohl, T.
    PHYSICAL REVIEW LETTERS, 2018, 120 (11)
  • [32] Description of quasiparticles in stochastic many-body methods
    Vlcek, Vojtech
    Baer, Roi
    Rabani, Eran
    Neuhauser, Daniel
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [33] Classical many-body chaos with and without quasiparticles
    Bilitewski, Thomas
    Bhattacharjee, Subhro
    Moessner, Roderich
    PHYSICAL REVIEW B, 2021, 103 (17)
  • [34] Embedding Quantum Many-Body Scars into Decoherence-Free Subspaces
    Wang, He-Ran
    Yuan, Dong
    Zhang, Shun-Yao
    Wang, Zhong
    Deng, Dong-Ling
    Duan, L. -M.
    PHYSICAL REVIEW LETTERS, 2024, 132 (15)
  • [35] Scrambling of quantum information in quantum many-body systems
    Iyoda, Eiki
    Sagawa, Takahiro
    PHYSICAL REVIEW A, 2018, 97 (04)
  • [36] Spontaneous symmetry breaking in nonsteady modes of open quantum many-body systems
    Haga, Taiki
    PHYSICAL REVIEW A, 2023, 107 (05)
  • [37] Density matrix renormalization group approach for many-body open quantum systems
    Rotureau, J.
    Michel, N.
    Nazarewicz, W.
    Ploszajczak, M.
    Dukelsky, J.
    PHYSICAL REVIEW LETTERS, 2006, 97 (11)
  • [38] Positive Tensor Network Approach for Simulating Open Quantum Many-Body Systems
    Werner, A. H.
    Jaschke, D.
    Silvi, P.
    Kliesch, M.
    Calarco, T.
    Eisert, J.
    Montangero, S.
    PHYSICAL REVIEW LETTERS, 2016, 116 (23)
  • [39] Thermalization and ergodicity in one-dimensional many-body open quantum systems
    Znidaric, Marko
    Prosen, Tomaz
    Benenti, Giuliano
    Casati, Giulio
    Rossini, Davide
    PHYSICAL REVIEW E, 2010, 81 (05):
  • [40] Simulating open quantum systems: from many-body interactions to stabilizer pumping
    Mueller, M.
    Hammerer, K.
    Zhou, Y. L.
    Roos, C. F.
    Zoller, P.
    NEW JOURNAL OF PHYSICS, 2011, 13