Generative Adversarial Networks for Electroencephalogram Signal Analysis: A Mini Review

被引:1
|
作者
Wang, Junkongshuai [1 ]
Mu, Wei [1 ]
Wang, Aiping [1 ]
Wang, Lu [1 ]
Han, Jiaguan [1 ]
Wang, Pengchao [1 ]
Niu, Lan [2 ]
Bin, Jianxiong [2 ]
Zhang, Lihua [1 ,2 ]
Kang, Xiaoyang [1 ,2 ,3 ,4 ]
机构
[1] Fudan Univ, Inst Meta Med,Acad Engn & Technol,Lab Neural Inte, Minist Educ,Inst AI & Robot,State Key Lab Med Neu, MOE Frontiers Ctr Brain Sci,Engn Res Ctr AI & Rob, Shanghai, Peoples R China
[2] Ji Hua Lab, Foshan, Guangdong, Peoples R China
[3] Fudan Univ, Yiwu Res Inst, Chengbei Rd, Yiwu City 322000, Zhejiang, Peoples R China
[4] Zhejiang Lab, Res Ctr Intelligent Sensing, Hangzhou 311100, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Generative adversarial network (GAN); braincomputer interface (BCI); electroencephalography (EEG); data augmentation;
D O I
10.1109/BCI57258.2023.10078666
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Brain-computer interface (BCI) technology based on electroencephalography (EEG) signals is growing rapidly and attracting widespread attention. However, due to the EEG acquisition methods, the quality and quantity of EEG signals are not able to be guaranteed. To alleviate the problems caused by the lack of data, in this paper, we introduce the applications of EEG signals using generative adversarial networks (GANs) which have shown great performance in image data augmentation and other time series data and then discuss their performance.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] A Review on Generative Adversarial Networks
    Yuan, Yiqin
    Guo, Yuhao
    2020 5TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE, COMPUTER TECHNOLOGY AND TRANSPORTATION (ISCTT 2020), 2020, : 392 - 401
  • [2] A Review: Generative Adversarial Networks
    Gonog, Liang
    Zhou, Yimin
    PROCEEDINGS OF THE 2019 14TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2019), 2019, : 505 - 510
  • [3] A Review on Generative Adversarial Networks
    De Silva, Dilum Maduranga
    Poravi, Guhanathan
    2021 6TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2021,
  • [4] Video Generative Adversarial Networks: A Review
    Aldausari, Nuha
    Sowmya, Arcot
    Marcus, Nadine
    Mohammadi, Gelareh
    ACM COMPUTING SURVEYS, 2023, 55 (02)
  • [5] Generative Adversarial Networks: A Literature Review
    Cheng, Jieren
    Yang, Yue
    Tang, Xiangyan
    Xiong, Naixue
    Zhang, Yuan
    Lei, Feifei
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2020, 14 (12): : 4625 - 4647
  • [6] A Review of Application of Generative Adversarial Networks
    Ye C.
    Guan W.
    Tongji Daxue Xuebao/Journal of Tongji University, 2020, 48 (04): : 591 - 601
  • [7] Skin lesion analysis using generative adversarial networks: a review
    Gilani, Syed Qasim
    Marques, Oge
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (19) : 30065 - 30106
  • [8] Skin lesion analysis using generative adversarial networks: a review
    Syed Qasim Gilani
    Oge Marques
    Multimedia Tools and Applications, 2023, 82 : 30065 - 30106
  • [9] Deep Generative Adversarial Networks for the Sparse Signal Denoising
    Wu, Kailun
    Zhang, Changshui
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 1127 - 1132
  • [10] Wireless signal enhancement based on generative adversarial networks
    Zhou, Xue
    Sun, Zhuo
    Wu, Hengmiao
    AD HOC NETWORKS, 2020, 103