Deep reinforcement learning based computation offloading for xURLLC services with UAV-assisted IoT-based multi-access edge computing system

被引:3
|
作者
Fatima, Nida [1 ]
Saxena, Paresh [1 ]
Giambene, Giovanni [2 ]
机构
[1] BITS Pilani, Dept Comp Sci & Informat Syst, Hyderabad Campus, Hyderabad 500078, India
[2] Univ Siena, Dept Informat Engn & Math Sci, I-53100 Siena, Italy
关键词
Deep reinforcement learning; Computation offloading; Internet of Things; Multi-access edge computing; Unmanned aerial vehicles; Next-generation ultra-reliable and low-latency communications; RESOURCE-ALLOCATION;
D O I
10.1007/s11276-023-03596-y
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
New Internet of Things (IoT) based applications with stricter key performance indicators (KPI) such as round-trip delay, network availability, energy efficiency, spectral efficiency, security, age of information, throughput, and jitter present unprecedented challenges in achieving next-generation ultra-reliable and low-latency communications (xURLLC) for sixth-generation (6 G) communication systems and beyond. In this paper, we aim to collaboratively utilize technologies such as deep reinforcement learning (DRL), unmanned aerial vehicle (UAV), and multi-access edge computing (MEC) to meet the aforementioned KPIs and support the xURLLC services. We present a DRL-empowered UAV-assisted IoT-based MEC system in which a UAV carries a MEC server and provides computation services to IoT devices. Specifically, we have employed twin delay deep deterministic policy gradient (TD3), a DRL algorithm, to find optimal computation offloading policies while simultaneously minimizing both the processing delay and the energy consumption of IoT devices, which inherently influence the KPI requirements. Numerical results illustrate the effectiveness of the proposed approach that can significantly reduce the processing delay and energy consumption, and converge quickly, outperforming the other state-of-the-art DRL-based computation offloading algorithms including Double Deep Q-Network(DDQN) and Deep Deterministic Policy Gradient (DDPG).
引用
收藏
页码:7275 / 7291
页数:17
相关论文
共 50 条
  • [31] Deep Reinforcement Learning-Based Computation Offloading for 5G Vehicle-Aware Multi-Access Edge Computing Network
    Ziying Wu
    Danfeng Yan
    China Communications, 2021, 18 (11) : 26 - 41
  • [32] Deep reinforcement learning-based computation offloading for 5G vehicle-aware multi-access edge computing network
    Wu, Ziying
    Yan, Danfeng
    CHINA COMMUNICATIONS, 2021, 18 (11) : 26 - 41
  • [33] Computation Offloading with Privacy-Preserving in Multi-Access Edge Computing: A Multi-Agent Deep Reinforcement Learning Approach
    Dai, Xiang
    Luo, Zhongqiang
    Zhang, Wei
    ELECTRONICS, 2024, 13 (13)
  • [34] UAV-Assisted Multi-Access Edge Computing With Altitude-Dependent Computing Power
    Deng, Yiqin
    Zhang, Haixia
    Chen, Xianhao
    Fang, Yuguang
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (08) : 9404 - 9418
  • [35] Computation offloading Optimization in Edge Computing based on Deep Reinforcement Learning
    Zhu Qinghua
    Chang Ying
    Zhao Jingya
    Liu Yong
    2020 5TH INTERNATIONAL CONFERENCE ON MECHANICAL, CONTROL AND COMPUTER ENGINEERING (ICMCCE 2020), 2020, : 1552 - 1558
  • [36] Deep Reinforcement Learning-Based Dynamic Offloading Management in UAV-Assisted MEC System
    Tian, Kang
    Liu, Yameng
    Chai, Haojun
    Liu, Boyang
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [37] Edge Computing Task Offloading Optimization for a UAV-Assisted Internet of Vehicles via Deep Reinforcement Learning
    Yan, Ming
    Xiong, Rui
    Wang, Yan
    Li, Chunguo
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (04) : 5647 - 5658
  • [38] Task Offloading and Trajectory Control for UAV-Assisted Mobile Edge Computing Using Deep Reinforcement Learning
    Zhang, Lu
    Zhang, Zi-Yan
    Min, Luo
    Tang, Chao
    Zhang, Hong-Ying
    Wang, Ya-Hong
    Cai, Peng
    IEEE ACCESS, 2021, 9 : 53708 - 53719
  • [39] Deep Reinforcement Learning Based Dynamic Trajectory Control for UAV-Assisted Mobile Edge Computing
    Wang, Liang
    Wang, Kezhi
    Pan, Cunhua
    Xu, Wei
    Aslam, Nauman
    Nallanathan, Arumugam
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2022, 21 (10) : 3536 - 3550
  • [40] Evolutionary Multi-Objective Reinforcement Learning Based Trajectory Control and Task Offloading in UAV-Assisted Mobile Edge Computing
    Song, Fuhong
    Xing, Huanlai
    Wang, Xinhan
    Luo, Shouxi
    Dai, Penglin
    Xiao, Zhiwen
    Zhao, Bowen
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2023, 22 (12) : 7387 - 7405