Deep reinforcement learning based computation offloading for xURLLC services with UAV-assisted IoT-based multi-access edge computing system

被引:3
|
作者
Fatima, Nida [1 ]
Saxena, Paresh [1 ]
Giambene, Giovanni [2 ]
机构
[1] BITS Pilani, Dept Comp Sci & Informat Syst, Hyderabad Campus, Hyderabad 500078, India
[2] Univ Siena, Dept Informat Engn & Math Sci, I-53100 Siena, Italy
关键词
Deep reinforcement learning; Computation offloading; Internet of Things; Multi-access edge computing; Unmanned aerial vehicles; Next-generation ultra-reliable and low-latency communications; RESOURCE-ALLOCATION;
D O I
10.1007/s11276-023-03596-y
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
New Internet of Things (IoT) based applications with stricter key performance indicators (KPI) such as round-trip delay, network availability, energy efficiency, spectral efficiency, security, age of information, throughput, and jitter present unprecedented challenges in achieving next-generation ultra-reliable and low-latency communications (xURLLC) for sixth-generation (6 G) communication systems and beyond. In this paper, we aim to collaboratively utilize technologies such as deep reinforcement learning (DRL), unmanned aerial vehicle (UAV), and multi-access edge computing (MEC) to meet the aforementioned KPIs and support the xURLLC services. We present a DRL-empowered UAV-assisted IoT-based MEC system in which a UAV carries a MEC server and provides computation services to IoT devices. Specifically, we have employed twin delay deep deterministic policy gradient (TD3), a DRL algorithm, to find optimal computation offloading policies while simultaneously minimizing both the processing delay and the energy consumption of IoT devices, which inherently influence the KPI requirements. Numerical results illustrate the effectiveness of the proposed approach that can significantly reduce the processing delay and energy consumption, and converge quickly, outperforming the other state-of-the-art DRL-based computation offloading algorithms including Double Deep Q-Network(DDQN) and Deep Deterministic Policy Gradient (DDPG).
引用
收藏
页码:7275 / 7291
页数:17
相关论文
共 50 条
  • [21] Computation Offloading in Edge Computing Based on Deep Reinforcement Learning
    Li, MingChu
    Mao, Ning
    Zheng, Xiao
    Gadekallu, Thippa Reddy
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON COMPUTING AND COMMUNICATION NETWORKS (ICCCN 2021), 2022, 394 : 339 - 353
  • [22] Energy-efficient collaborative task offloading in multi-access edge computing based on deep reinforcement learning
    Wang, Shudong
    Zhao, Shengzhe
    Gui, Haiyuan
    He, Xiao
    Lu, Zhi
    Chen, Baoyun
    Fan, Zixuan
    Pang, Shanchen
    AD HOC NETWORKS, 2025, 169
  • [23] Optimization for computational offloading in multi-access edge computing: A deep reinforcement learning scheme
    Wang, Jian
    Ke, Hongchang
    Liu, Xuejie
    Wang, Hui
    Computer Networks, 2022, 204
  • [24] Deep Reinforcement Learning Based Secure Transmission for UAV-Assisted Mobile Edge Computing
    Vijayalakshmi, N.
    Gulati, Sagar
    Sujin, B. Ben
    Rao, B. Madhav
    Kumar, K. Kiran
    International Journal of Interactive Mobile Technologies, 2024, 18 (17) : 154 - 169
  • [25] Deep Reinforcement Learning based Path Planning for UAV-assisted Edge Computing Networks
    Peng, Yingsheng
    Liu, Yong
    Zhang, Han
    2021 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2021,
  • [26] Deep Reinforcement Learning Driven UAV-Assisted Edge Computing
    Zhang, Liang
    Jabbari, Bijan
    Ansari, Nirwan
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (24) : 25449 - 25459
  • [27] Optimization for computational offloading in multi-access edge computing: A deep reinforcement learning scheme
    Wang, Jian
    Ke, Hongchang
    Liu, Xuejie
    Wang, Hui
    COMPUTER NETWORKS, 2022, 204
  • [28] Entropy-based Reinforcement Learning for computation offloading service in software-defined multi-access edge computing
    Li, Kexin
    Wang, Xingwei
    Ni, Qiang
    Huang, Min
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2022, 136 : 241 - 251
  • [29] Learning-based Privacy-Preserving Computation Offloading in Multi-Access Edge Computing
    You, Feiran
    Yuan, Xin
    Ni, Wei
    Jamalipour, Abbas
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 922 - 927
  • [30] A computation offloading strategy for multi-access edge computing based on DQUIC protocol
    Yang, Peng
    Ma, Ruochen
    Yi, Meng
    Zhang, Yifan
    Li, Bing
    Bai, Zijian
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (12): : 18285 - 18318