Edge Computing Task Offloading Optimization for a UAV-Assisted Internet of Vehicles via Deep Reinforcement Learning

被引:26
|
作者
Yan, Ming [1 ,2 ]
Xiong, Rui [1 ,2 ]
Wang, Yan [3 ]
Li, Chunguo [4 ]
机构
[1] Commun Univ China, Sch Informat & Commun Engn, Beijing 100024, Peoples R China
[2] Commun Univ China, Key Lab Acoust Visual Technol & Intelligent Contro, Beijing 100024, Peoples R China
[3] Commun Univ China, Sch Data Sci & Intelligent Media, Beijing 100024, Peoples R China
[4] Southeast Univ, Sch Informat Sci & Engn, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
Unmanned aerial vehicle (UAV); Internet of Vehicles (IoV); task offloading; deep deterministic policy gradient (DDPG); MODEL;
D O I
10.1109/TVT.2023.3331363
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In the context of the unmanned aerial vehicle (UAV)-assisted vehicular networking system, more network factors need to be considered to ensure the safe operation of connected vehicles. A large volume of delay-sensitive and computationally demanding tasks necessitate offloading to UAVs or roadside units for processing. And the efficient allocation of various network resources of vehicles, UAVs, and roadside units under constrained conditions determines the efficiency of task offloading. Deep reinforcement learning (DRL) has demonstrated its efficacy as an experienced approach for solving such problems. In this article, we delve into the utilization of deep reinforcement learning to design an efficient UAV-assisted vehicular edge computing task offloading strategy. Under the constraints of limited network bandwidth and limited UAV power, the trajectory and the task offloading strategy of the UAV are jointly optimized. The primary objective of our proposed strategy is to achieve a notable reduction in the system delay of the edge computing network. Given the dynamic variability of tasks arrival, we employ a long short-term memory (LSTM) network with the attention mechanism and a deep deterministic policy gradient (DDPG) algorithm to effectively model the optimization problem as a Markov decision process. This approach can obtain the optimal policy through interactive learning from the UAV and the vehicle environment. The experiment results illustrate that this strategy outperforms other baseline strategies in terms of convergence speed, network delay, and task offloading ratio.
引用
收藏
页码:5647 / 5658
页数:12
相关论文
共 50 条
  • [1] Deep Reinforcement Learning Based Computation Offloading in UAV-Assisted Edge Computing
    Zhang, Peiying
    Su, Yu
    Li, Boxiao
    Liu, Lei
    Wang, Cong
    Zhang, Wei
    Tan, Lizhuang
    DRONES, 2023, 7 (03)
  • [2] Multi-Agent Deep Reinforcement Learning for Task Offloading in UAV-Assisted Mobile Edge Computing
    Zhao, Nan
    Ye, Zhiyang
    Pei, Yiyang
    Liang, Ying-Chang
    Niyato, Dusit
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (09) : 6949 - 6960
  • [3] Task Offloading and Trajectory Control for UAV-Assisted Mobile Edge Computing Using Deep Reinforcement Learning
    Zhang, Lu
    Zhang, Zi-Yan
    Min, Luo
    Tang, Chao
    Zhang, Hong-Ying
    Wang, Ya-Hong
    Cai, Peng
    IEEE ACCESS, 2021, 9 : 53708 - 53719
  • [4] UAV-Assisted Task Offloading in Edge Computing
    Zhang, Junna
    Zhang, Guoxian
    Wang, Xinxin
    Zhao, Xiaoyan
    Yuan, Peiyan
    Jin, Hu
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (05): : 5559 - 5574
  • [5] Deep Reinforcement Learning for Multi-Hop Offloading in UAV-Assisted Edge Computing
    Nguyen Tien Hoa
    Do Van Dai
    Le Hoang Lan
    Nguyen Cong Luong
    Duc Van Le
    Niyato, Dusit
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (12) : 16917 - 16922
  • [6] Task Offloading and Trajectory Optimization for UAV-Assisted Mobile Edge Computing
    Shi, Mengmeng
    Xing, Yanchao
    Guo, Xueli
    Zhu, Xuerui
    Zhu, Ziyao
    Zhou, Jiaqi
    2024 INTERNATIONAL CONFERENCE ON UBIQUITOUS COMMUNICATION, UCOM 2024, 2024, : 432 - 437
  • [7] Joint Data Caching and Computation Offloading in UAV-Assisted Internet of Vehicles via Federated Deep Reinforcement Learning
    Huang, Jiwei
    Zhang, Man
    Wan, Jiangyuan
    Chen, Ying
    Zhang, Ning
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (11) : 17644 - 17656
  • [8] Task offloading method of edge computing in internet of vehicles based on deep reinforcement learning
    Zhang, Degan
    Cao, Lixiang
    Zhu, Haoli
    Zhang, Ting
    Du, Jinyu
    Jiang, Kaiwen
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2022, 25 (02): : 1175 - 1187
  • [9] Task offloading method of edge computing in internet of vehicles based on deep reinforcement learning
    Degan Zhang
    Lixiang Cao
    Haoli Zhu
    Ting Zhang
    Jinyu Du
    Kaiwen Jiang
    Cluster Computing, 2022, 25 : 1175 - 1187
  • [10] Computation Offloading and Trajectory Control for UAV-Assisted Edge Computing Using Deep Reinforcement Learning
    Qi, Huamei
    Zhou, Zheng
    APPLIED SCIENCES-BASEL, 2022, 12 (24):