A smart DDMRP model using machine learning techniques

被引:1
|
作者
Aguilar, Jose [1 ,2 ]
Guillen, Ricardo Jose Dos Santos [1 ]
Garcia, Rodrigo [2 ,3 ]
Gomez, Carlos [4 ]
Jerez, M. [1 ]
Narvaez, Marvin Luis Jimenez [3 ]
Puerto, Eduard [5 ]
机构
[1] Univ Los Andes, CEMISID Fac Ingn, Merida, Venezuela
[2] Univ EAFIT, GIDITIC, Medellin, Colombia
[3] Univ Sinu, Fac Ciencias Ingn, Monteria, Colombia
[4] EXEK Co, Medellin, Colombia
[5] Univ Francisco Paula Santander, Grp GIA, Cucuta, Colombia
关键词
inventory management; demand-driven model; machine learning; supply chain; DDMRP; INVENTORY MANAGEMENT; DEMAND; TIME;
D O I
10.1504/IJVCM.2023.130973
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper proposes a hybrid algorithm based on the demand-driven manufacturing resources planning (DDMRP) model and machine learning techniques to determine when and how much to purchase a product. The DDMRP model optimises the inventory using predictive models to determine the product demands, and the behaviour of the providers. Then, our DDMRP model determines when and how much to purchase. Thus, our approach defines a smart inventory management to establish what should be purchased and when. The preliminary results are very encouraging because the inventory follows the optimal levels by product based on demand, avoiding a lack of inventory.
引用
收藏
页码:107 / 142
页数:37
相关论文
共 50 条
  • [41] Annual Rainfall Model by Using Machine Learning Techniques for Agricultural Adjustment
    Prangchumpol, Dulyawit
    Jomsri, Pijitra
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2020, 11 (03) : 161 - 165
  • [42] Online Payment Fraud Detection Model Using Machine Learning Techniques
    Almazroi, Abdulwahab Ali
    Ayub, Nasir
    IEEE ACCESS, 2023, 11 : 137188 - 137203
  • [43] A Lightweight Model for DDoS Attack Detection Using Machine Learning Techniques
    Sadhwani, Sapna
    Manibalan, Baranidharan
    Muthalagu, Raja
    Pawar, Pranav
    APPLIED SCIENCES-BASEL, 2023, 13 (17):
  • [44] A predictive model to estimate effort in a sprint using machine learning techniques
    Ramessur M.A.
    Nagowah S.D.
    International Journal of Information Technology, 2021, 13 (3) : 1101 - 1110
  • [45] Air pollution control model using machine learning and IoT techniques
    Shetty, Chetan
    Sowmya, B. J.
    Seema, S.
    Srinivasa, K. G.
    DIGITAL TWIN PARADIGM FOR SMARTER SYSTEMS AND ENVIRONMENTS: THE INDUSTRY USE CASES, 2020, 117 : 187 - 218
  • [46] Paper quality enhancement and model prediction using machine learning techniques
    Devi, T. Kalavathi
    Priyanka, E. B.
    Sakthivel, P.
    RESULTS IN ENGINEERING, 2023, 17
  • [47] Machine learning techniques in internet of UAVs for smart cities applications
    Alqurashi, Fahad A.
    Alsolami, F.
    Abdel-Khalek, S.
    Ali, Elmustafa Sayed
    Saeed, Rashid A.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (04) : 3203 - 3226
  • [48] Machine learning in the Internet of Things: Designed techniques for smart cities
    Din, Ikram Ud
    Guizani, Mohsen
    Rodrigues, Joel J. P. C.
    Hassan, Suhaidi
    Korotaev, Valery V.
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2019, 100 : 826 - 843
  • [49] Using machine learning techniques for stylometry
    Ramyaa
    He, CZ
    Rasheed, K
    IC-AI '04 & MLMTA'04 , VOL 1 AND 2, PROCEEDINGS, 2004, : 897 - 903
  • [50] Structure and Model of the Smart House Security System Using Machine Learning Methods
    Artem, Kazarian
    Vasyl, Teslyuk
    2017 2ND IEEE INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION AND COMMUNICATION TECHNOLOGIES-2017 (AICT 2017), 2017, : 105 - 108