A smart DDMRP model using machine learning techniques

被引:1
|
作者
Aguilar, Jose [1 ,2 ]
Guillen, Ricardo Jose Dos Santos [1 ]
Garcia, Rodrigo [2 ,3 ]
Gomez, Carlos [4 ]
Jerez, M. [1 ]
Narvaez, Marvin Luis Jimenez [3 ]
Puerto, Eduard [5 ]
机构
[1] Univ Los Andes, CEMISID Fac Ingn, Merida, Venezuela
[2] Univ EAFIT, GIDITIC, Medellin, Colombia
[3] Univ Sinu, Fac Ciencias Ingn, Monteria, Colombia
[4] EXEK Co, Medellin, Colombia
[5] Univ Francisco Paula Santander, Grp GIA, Cucuta, Colombia
关键词
inventory management; demand-driven model; machine learning; supply chain; DDMRP; INVENTORY MANAGEMENT; DEMAND; TIME;
D O I
10.1504/IJVCM.2023.130973
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper proposes a hybrid algorithm based on the demand-driven manufacturing resources planning (DDMRP) model and machine learning techniques to determine when and how much to purchase a product. The DDMRP model optimises the inventory using predictive models to determine the product demands, and the behaviour of the providers. Then, our DDMRP model determines when and how much to purchase. Thus, our approach defines a smart inventory management to establish what should be purchased and when. The preliminary results are very encouraging because the inventory follows the optimal levels by product based on demand, avoiding a lack of inventory.
引用
收藏
页码:107 / 142
页数:37
相关论文
共 50 条
  • [31] System of systems uncertainty quantification using machine learning techniques with smart grid application
    Raz, Ali K.
    Wood, Paul C.
    Mockus, Linas
    DeLaurentis, Daniel A.
    SYSTEMS ENGINEERING, 2020, 23 (06) : 770 - 782
  • [32] Detection and Clustering of Neutral Section Faults Using Machine Learning Techniques for SMART Railways
    Phala, Kennedy
    Doorsamy, Wesley
    Paul, Babu Sena
    2019 6TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING & MACHINE INTELLIGENCE (ISCMI 2019), 2019, : 1 - 6
  • [33] Comparative Techniques Using Hierarchical Modelling and Machine Learning for Procedure Recognition in Smart Hospitals
    Noor S.
    Aamir M.
    Ismat N.
    Saleem M.I.
    Journal of ICT Standardization, 2022, 10 (02): : 145 - 164
  • [34] MODELLING SMART ROAD TRAFFIC CONGESTION CONTROL SYSTEM USING MACHINE LEARNING TECHNIQUES
    Ata, A.
    Khan, M. A.
    Abbas, S.
    Ahmad, G.
    Fatima, A.
    NEURAL NETWORK WORLD, 2019, 29 (02) : 99 - 110
  • [35] Irrigation System Automation Using Finite State Machine Model and Machine Learning Techniques
    Pradeep, H. K.
    Jagadeesh, Prabhudev
    Sheshshayee, M. S.
    Sujeet, Desai
    INTELLIGENT COMPUTING AND COMMUNICATION, ICICC 2019, 2020, 1034 : 495 - 501
  • [36] Automating Feature Model maintainability evaluation using machine learning techniques
    Silva, Publio
    Bezerra, Carla
    Machado, Ivan
    JOURNAL OF SYSTEMS AND SOFTWARE, 2023, 195
  • [37] A novel method to estimate model uncertainty using machine learning techniques
    Solomatine, Dimitri P.
    Shrestha, Durga Lal
    WATER RESOURCES RESEARCH, 2009, 45
  • [38] A reliability model for assessing corporate governance using machine learning techniques
    Hernandez-Perdomo, Elvis
    Guney, Yilmaz
    Rocco, Claudio M.
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2019, 185 : 220 - 231
  • [39] A novel method to estimate model uncertainty using machine learning techniques
    Solomatine, Dimitri P.
    Shrestha, Durga Lal
    Water Resources Research, 2009, 45 (12)
  • [40] Stacking Model for Heart Stroke Prediction using Machine Learning Techniques
    Mohapatra S.
    Mishra I.
    Mohanty S.
    EAI Endorsed Transactions on Pervasive Health and Technology, 2023, 9 (01)