A smart DDMRP model using machine learning techniques

被引:1
|
作者
Aguilar, Jose [1 ,2 ]
Guillen, Ricardo Jose Dos Santos [1 ]
Garcia, Rodrigo [2 ,3 ]
Gomez, Carlos [4 ]
Jerez, M. [1 ]
Narvaez, Marvin Luis Jimenez [3 ]
Puerto, Eduard [5 ]
机构
[1] Univ Los Andes, CEMISID Fac Ingn, Merida, Venezuela
[2] Univ EAFIT, GIDITIC, Medellin, Colombia
[3] Univ Sinu, Fac Ciencias Ingn, Monteria, Colombia
[4] EXEK Co, Medellin, Colombia
[5] Univ Francisco Paula Santander, Grp GIA, Cucuta, Colombia
关键词
inventory management; demand-driven model; machine learning; supply chain; DDMRP; INVENTORY MANAGEMENT; DEMAND; TIME;
D O I
10.1504/IJVCM.2023.130973
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper proposes a hybrid algorithm based on the demand-driven manufacturing resources planning (DDMRP) model and machine learning techniques to determine when and how much to purchase a product. The DDMRP model optimises the inventory using predictive models to determine the product demands, and the behaviour of the providers. Then, our DDMRP model determines when and how much to purchase. Thus, our approach defines a smart inventory management to establish what should be purchased and when. The preliminary results are very encouraging because the inventory follows the optimal levels by product based on demand, avoiding a lack of inventory.
引用
收藏
页码:107 / 142
页数:37
相关论文
共 50 条
  • [21] Mandibular shape prediction model using machine learning techniques
    Tania Camila Niño-Sandoval
    Robinson Andrés Jaque
    Fabio A. González
    Belmiro C. E. Vasconcelos
    Clinical Oral Investigations, 2022, 26 : 3085 - 3096
  • [22] A Review on Machine Learning in Smart Antenna: Methods and Techniques
    Sadiq, Mohammed
    bin Sulaiman, Nasri
    Isa, Maryam Mohd
    Hamidon, Mohd Nizar
    TEM JOURNAL-TECHNOLOGY EDUCATION MANAGEMENT INFORMATICS, 2022, 11 (02): : 695 - 705
  • [23] PRISMA on Machine Learning Techniques in Smart City Development
    Ionescu, Stefan-Alexandru
    Jula, Nicolae Marius
    Hurduzeu, Gheorghe
    Pauceanu, Alexandrina Maria
    Sima, Alexandra-Georgiana
    APPLIED SCIENCES-BASEL, 2024, 14 (16):
  • [24] Exploring Machine Learning techniques for Smart Drainage System
    Chen, Changhua
    Pang, Yan
    2019 IEEE FIFTH INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING SERVICE AND APPLICATIONS (IEEE BIGDATASERVICE 2019), 2019, : 63 - 70
  • [25] Smart wearable model for predicting heart disease using machine learning
    Rani, S. V. Jansi
    Chandran, K. R. Sarath
    Ranganathan, Akshaya
    Chandrasekharan, M.
    Janani, B.
    Deepsheka, G.
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2022, 13 (9) : 4321 - 4332
  • [26] Smart Design of Hip Replacement Prostheses Using Additive Manufacturing and Machine Learning Techniques
    Milone, Dario
    D'Andrea, Danilo
    Santonocito, Dario
    PROSTHESIS, 2024, 6 (01): : 24 - 40
  • [27] IoT-Based Smart Inventory Management System Using Machine Learning Techniques
    Manoharan, Geetha
    Kumar, Vipin
    Karthik, A.
    Asha, V
    Mohan, Chinnem Rama
    Nijhawan, Ginni
    2024 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND APPLIED INFORMATICS, ACCAI 2024, 2024,
  • [28] Demand-side load forecasting in smart grids using machine learning techniques
    Masood, Muhammad Yasir
    Aurangzeb, Sana
    Aleem, Muhammad
    Chilwan, Ameen
    Awais, Muhammad
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [29] Demand-side load forecasting in smart grids using machine learning techniques
    Masood M.Y.
    Aurangzeb S.
    Aleem M.
    Chilwan A.
    Awais M.
    PeerJ Computer Science, 2024, 10
  • [30] Detecting false data attacks using machine learning techniques in smart grid: A survey
    Cui, Lei
    Qu, Youyang
    Gao, Longxiang
    Xie, Gang
    Yu, Shui
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2020, 170