Lagrange-like spectrum of perfect additive complements

被引:0
|
作者
Barany, Balazs [1 ]
Fang, Jin-Hui [4 ]
Sandor, Csaba [1 ,2 ,3 ]
机构
[1] Budapest Univ Technol & Econ, Inst Math, Dept Stochast, H-1111 Budapest, Hungary
[2] Budapest Univ Technol & Econ, Dept Comp Sci & Informat Theory, H-1111 Budapest, Hungary
[3] MTA BME Lendulet Arithmet Combinator Res Grp, ELKH, H-1111 Budapest, Hungary
[4] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
additive complements; Lagrange spectrum; Lebesgue measure;
D O I
10.4064/aa230224-10-10
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Two infinite sets A and B of non-negative integers are called perfect additive complements of non-negative integers if every non-negative integer can be uniquely expressed as the sum of elements from A and B. We define a Lagrange-like spectrum of the perfect additive complements (L for short). As a main result, we obtain the smallest accumulation point of the set L and prove that L is closed.
引用
收藏
页码:269 / 287
页数:20
相关论文
共 50 条
  • [31] Perfect Fuzzy Soft Tripartite Graphs and Their Complements
    Kalaiarasi, Kalaichelvan
    Mahalakshmi, L.
    Kausar, Nasreen
    Kousar, Sajida
    Kattel, Parameshwari
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2022, 2022
  • [32] Additive Complements with Narkiewicz's Condition
    Yong-Gao Chen
    Jin-Hui Fang
    Combinatorica, 2019, 39 : 813 - 823
  • [33] Additive Complements with Narkiewicz's Condition
    Chen, Yong-Gao
    Fang, Jin-Hui
    COMBINATORICA, 2019, 39 (04) : 813 - 823
  • [34] A note on minimal additive complements of integers
    Kwon, Andrew
    DISCRETE MATHEMATICS, 2019, 342 (07) : 1912 - 1918
  • [35] Additive Complements for a Given Asymptotic Density
    Alain Faisant
    Georges Grekos
    Ram Krishna Pandey
    Sai Teja Somu
    Mediterranean Journal of Mathematics, 2021, 18
  • [36] Abelianization and orthogonal complements of additive categories
    Gisin, VB
    COMMUNICATIONS IN ALGEBRA, 1996, 24 (06) : 2025 - 2063
  • [37] Additive Complements for a Given Asymptotic Density
    Faisant, Alain
    Grekos, Georges
    Pandey, Ram Krishna
    Somu, Sai Teja
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (01)
  • [38] ON THE GAPS OF THE LAGRANGE SPECTRUM
    DIETZ, B
    ACTA ARITHMETICA, 1985, 45 (01) : 59 - 64
  • [39] On the quadratic Lagrange spectrum
    Bugeaud, Yann
    MATHEMATISCHE ZEITSCHRIFT, 2014, 276 (3-4) : 985 - 999
  • [40] On the quadratic Lagrange spectrum
    Yann Bugeaud
    Mathematische Zeitschrift, 2014, 276 : 985 - 999