Lagrange-like spectrum of perfect additive complements

被引:0
|
作者
Barany, Balazs [1 ]
Fang, Jin-Hui [4 ]
Sandor, Csaba [1 ,2 ,3 ]
机构
[1] Budapest Univ Technol & Econ, Inst Math, Dept Stochast, H-1111 Budapest, Hungary
[2] Budapest Univ Technol & Econ, Dept Comp Sci & Informat Theory, H-1111 Budapest, Hungary
[3] MTA BME Lendulet Arithmet Combinator Res Grp, ELKH, H-1111 Budapest, Hungary
[4] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
additive complements; Lagrange spectrum; Lebesgue measure;
D O I
10.4064/aa230224-10-10
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Two infinite sets A and B of non-negative integers are called perfect additive complements of non-negative integers if every non-negative integer can be uniquely expressed as the sum of elements from A and B. We define a Lagrange-like spectrum of the perfect additive complements (L for short). As a main result, we obtain the smallest accumulation point of the set L and prove that L is closed.
引用
收藏
页码:269 / 287
页数:20
相关论文
共 50 条