Additive Complements for a Given Asymptotic Density

被引:0
|
作者
Alain Faisant
Georges Grekos
Ram Krishna Pandey
Sai Teja Somu
机构
[1] Université de Saint-Étienne,Institut Camille Jordan
[2] Indian Institute of Technology,Department of Mathematics
[3] Aspireal Technologies Private Limited,undefined
[4] Jubilee Hills,undefined
来源
关键词
Additive complements; asymptotic density; Primary 11B05; Secondary 11B13;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the existence of subsets A and B of N:={0,1,2,⋯}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {N}}:=\{0,1,2,\dots \}$$\end{document}, such that the sumset A+B:={a+b:a∈A,b∈B}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A+B:=\{a+b:a\in A,b\in B\}$$\end{document} has prescribed asymptotic density. We solve the particular case in which B is a given finite subset of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {N}}$$\end{document} and also the case when B=A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B=A$$\end{document}; in the later case, we generalize our result to kA:={x1+⋯+xk:xi∈A,i=1,⋯,k}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$kA:=\{x_1+\cdots +x_k: x_i\in A, i=1,\dots ,k\}$$\end{document} for an integer k≥2.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2.$$\end{document}
引用
收藏
相关论文
共 50 条
  • [1] Additive Complements for a Given Asymptotic Density
    Faisant, Alain
    Grekos, Georges
    Pandey, Ram Krishna
    Somu, Sai Teja
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (01)
  • [2] ADDITIVE COMPLEMENTS FOR TWO GIVEN ASYMPTOTIC DENSITIES
    Chu, Hùng Viêt
    arXiv, 2021,
  • [3] Highly Sparse Sets as Additive Complements for a Prescribed Density
    Hung Viet Chu
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (03)
  • [4] Highly Sparse Sets as Additive Complements for a Prescribed Density
    Hùng Việt Chu
    Mediterranean Journal of Mathematics, 2022, 19
  • [5] ON ADDITIVE COMPLEMENTS
    Fang, Jin-Hui
    Chen, Yong-Gao
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (06) : 1923 - 1927
  • [6] Asymptotic complements in the integers
    Biswas, Arindam
    Saha, Jyoti Prakash
    JOURNAL OF NUMBER THEORY, 2020, 213 : 101 - 115
  • [7] Highly Spare Sets as Additive Complements for a Prescribed Density: An Open Problem
    Hung Viet Chu
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (05)
  • [8] Highly Spare Sets as Additive Complements for a Prescribed Density: An Open Problem
    Hùng Việt Chu
    Mediterranean Journal of Mathematics, 2022, 19
  • [9] Additive complements of the squares
    Chen, Yong-Gao
    Fang, Jin-Hui
    JOURNAL OF NUMBER THEORY, 2017, 180 : 410 - 422
  • [10] On infinite additive complements
    Fang, JinHui
    Chen, YongGao
    SCIENCE CHINA-MATHEMATICS, 2017, 60 (10) : 1779 - 1790