On the broadcast independence number of circulant graphs

被引:1
|
作者
Laouar, Abdelamin [1 ]
Bouchemakh, Isma [1 ]
Sopena, Eric [2 ]
机构
[1] Univ Sci & Technol Houari Boumediene USTHB, Fac Math, Lab LIFORCE, BP 32 El Alia, Algiers 16111, Algeria
[2] Univ Bordeaux, Bordeaux INP, CNRS LaBRI, UMR 5800, F-33400 Talence, France
关键词
Broadcast; independent broadcast; circulant graph; DOMINATION; DIAMETER; NETWORKS;
D O I
10.1142/S1793830923500532
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An independent broadcast on a graph G is a function f : V -> {0, ..., diam(G)} such that (i) f(v) <= e(v) for every vertex v is an element of V (G), where diam(G) denotes the diameter of G and e(v) the eccentricity of vertex v, and (ii) d(u, v) > max{f(u), f(v)} for every two distinct vertices u and v with f(u)f(v) > 0. The broadcast independence number beta(b)(G) of G is then the maximum value of Sigma(v is an element of V) f(v), taken over all independent broadcasts on G. We prove that every circulant graph of the form C(n; 1, a), 3 <= a <= left perpendicularn/2right perpendicular, admits an optimal 2-bounded independent broadcast, that is, an independent broadcast f satisfying f(v) <= 2 for every vertex v, except when n = 2a + 1, or n = 2a and a is even. We then determine the broadcast independence number of various classes of such circulant graphs, and prove in particular that beta(b)(C(n; 1, a)) = alpha(C(n; 1, a)), except for C(n; 1, 2), C(2a + 1; 1, a), or C(2a; 1, a) with a not equal 2(p) and p >= 0, where alpha(C(n; 1, a)) denotes the independence number of C(n; 1, a).
引用
收藏
页数:36
相关论文
共 50 条
  • [41] Independence number of generalized Petersen graphs
    Besharati, Nazli
    Ebrahimi, J. B.
    Azadi, A.
    ARS COMBINATORIA, 2016, 124 : 239 - 255
  • [42] Independence number and [a, b]-factors of graphs
    Tang, Siping
    ARS COMBINATORIA, 2012, 106 : 247 - 255
  • [43] Independence number of generalized products of graphs
    Mehta, H. S.
    Acharya, U. P.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2020, 13 (01)
  • [44] The independence number of random interval graphs
    de la Vega, W. Fernandez
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2000, 1767 : 59 - 62
  • [45] On the k-independence number in graphs
    Bouchou, Ahmed
    Blidia, Mostafa
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2014, 59 : 311 - 322
  • [46] Independence and matching number of some graphs
    Chen, Ming
    Li, Yusheng
    Yang, Yiting
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2019, 37 (04) : 1342 - 1350
  • [47] On the independence number of minimum distance graphs
    Csizmadia, G
    DISCRETE & COMPUTATIONAL GEOMETRY, 1998, 20 (02) : 179 - 187
  • [48] The Independence Number of the Cartesian Product of Graphs
    Friedler, Louis M.
    ARS COMBINATORIA, 2011, 99 : 205 - 216
  • [49] A note on the independence number in bipartite graphs
    Sharifi, Elahe
    Rad, Nader Jafari
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2016, 66 : 344 - 349
  • [50] THE INDEPENDENCE NUMBER OF GRAPHS IN TERMS OF DEGREES
    SELKOW, SM
    DISCRETE MATHEMATICS, 1993, 122 (1-3) : 343 - 348