On the broadcast independence number of circulant graphs

被引:1
|
作者
Laouar, Abdelamin [1 ]
Bouchemakh, Isma [1 ]
Sopena, Eric [2 ]
机构
[1] Univ Sci & Technol Houari Boumediene USTHB, Fac Math, Lab LIFORCE, BP 32 El Alia, Algiers 16111, Algeria
[2] Univ Bordeaux, Bordeaux INP, CNRS LaBRI, UMR 5800, F-33400 Talence, France
关键词
Broadcast; independent broadcast; circulant graph; DOMINATION; DIAMETER; NETWORKS;
D O I
10.1142/S1793830923500532
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An independent broadcast on a graph G is a function f : V -> {0, ..., diam(G)} such that (i) f(v) <= e(v) for every vertex v is an element of V (G), where diam(G) denotes the diameter of G and e(v) the eccentricity of vertex v, and (ii) d(u, v) > max{f(u), f(v)} for every two distinct vertices u and v with f(u)f(v) > 0. The broadcast independence number beta(b)(G) of G is then the maximum value of Sigma(v is an element of V) f(v), taken over all independent broadcasts on G. We prove that every circulant graph of the form C(n; 1, a), 3 <= a <= left perpendicularn/2right perpendicular, admits an optimal 2-bounded independent broadcast, that is, an independent broadcast f satisfying f(v) <= 2 for every vertex v, except when n = 2a + 1, or n = 2a and a is even. We then determine the broadcast independence number of various classes of such circulant graphs, and prove in particular that beta(b)(C(n; 1, a)) = alpha(C(n; 1, a)), except for C(n; 1, 2), C(2a + 1; 1, a), or C(2a; 1, a) with a not equal 2(p) and p >= 0, where alpha(C(n; 1, a)) denotes the independence number of C(n; 1, a).
引用
收藏
页数:36
相关论文
共 50 条
  • [21] Independence number in path graphs
    Knor, M
    Niepel, L
    COMPUTING AND INFORMATICS, 2004, 23 (02) : 179 - 187
  • [22] ON THE INDEPENDENCE NUMBER OF RANDOM GRAPHS
    FRIEZE, AM
    DISCRETE MATHEMATICS, 1990, 81 (02) : 171 - 175
  • [23] On the strength and independence number of graphs
    Ichishima, Rikio
    Muntaner-Batle, Francesc A.
    Takahashi, Yukio
    CONTRIBUTIONS TO MATHEMATICS, 2022, 6 : 25 - 29
  • [24] ON THE INDEPENDENCE NUMBER OF SPARSE GRAPHS
    SHEARER, JB
    RANDOM STRUCTURES & ALGORITHMS, 1995, 7 (03) : 269 - 271
  • [25] COMPARING UPPER BROADCAST DOMINATION AND BOUNDARY INDEPENDENCE BROADCAST NUMBERS OF GRAPHS
    Mynhardt, Kieka
    Neilson, Linda
    TRANSACTIONS ON COMBINATORICS, 2024, 13 (01) : 105 - 126
  • [26] Independence number of graphs with a prescribed number of cliques
    Bohman, Tom
    Mubayi, Dhruv
    ELECTRONIC JOURNAL OF COMBINATORICS, 2019, 26 (02):
  • [27] On the broadcast domination number of permutation graphs
    Yi, Eunjeong
    THEORETICAL COMPUTER SCIENCE, 2020, 806 : 171 - 183
  • [28] The number of spanning trees in odd valent circulant graphs
    Chen, XB
    Lin, QY
    Zhang, FJ
    DISCRETE MATHEMATICS, 2004, 282 (1-3) : 69 - 79
  • [29] The perfect colorings of circulant graphs with a large number of colors
    Lisitsyna, Mariya Aleksandrovna
    Avgustinovich, Sergey Vladimirovich
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2024, 21 (01): : 188 - 195
  • [30] Further analysis of the number of spanning trees in circulant graphs
    Atajan, Talip
    Yong, Xuerong
    Inaba, Hiroshi
    DISCRETE MATHEMATICS, 2006, 306 (22) : 2817 - 2827