On the broadcast independence number of circulant graphs

被引:1
|
作者
Laouar, Abdelamin [1 ]
Bouchemakh, Isma [1 ]
Sopena, Eric [2 ]
机构
[1] Univ Sci & Technol Houari Boumediene USTHB, Fac Math, Lab LIFORCE, BP 32 El Alia, Algiers 16111, Algeria
[2] Univ Bordeaux, Bordeaux INP, CNRS LaBRI, UMR 5800, F-33400 Talence, France
关键词
Broadcast; independent broadcast; circulant graph; DOMINATION; DIAMETER; NETWORKS;
D O I
10.1142/S1793830923500532
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An independent broadcast on a graph G is a function f : V -> {0, ..., diam(G)} such that (i) f(v) <= e(v) for every vertex v is an element of V (G), where diam(G) denotes the diameter of G and e(v) the eccentricity of vertex v, and (ii) d(u, v) > max{f(u), f(v)} for every two distinct vertices u and v with f(u)f(v) > 0. The broadcast independence number beta(b)(G) of G is then the maximum value of Sigma(v is an element of V) f(v), taken over all independent broadcasts on G. We prove that every circulant graph of the form C(n; 1, a), 3 <= a <= left perpendicularn/2right perpendicular, admits an optimal 2-bounded independent broadcast, that is, an independent broadcast f satisfying f(v) <= 2 for every vertex v, except when n = 2a + 1, or n = 2a and a is even. We then determine the broadcast independence number of various classes of such circulant graphs, and prove in particular that beta(b)(C(n; 1, a)) = alpha(C(n; 1, a)), except for C(n; 1, 2), C(2a + 1; 1, a), or C(2a; 1, a) with a not equal 2(p) and p >= 0, where alpha(C(n; 1, a)) denotes the independence number of C(n; 1, a).
引用
收藏
页数:36
相关论文
共 50 条
  • [31] Bounds for the independence number of critical graphs
    Brinkmann, G
    Choudum, SA
    Grünewald, S
    Steffen, E
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2000, 32 : 137 - 140
  • [32] ON THE INDEPENDENCE NUMBER OF RANDOM CUBIC GRAPHS
    FRIEZE, A
    SUEN, S
    RANDOM STRUCTURES & ALGORITHMS, 1994, 5 (05) : 649 - 664
  • [33] Independence and matching number of some graphs
    Ming Chen
    Yusheng Li
    Yiting Yang
    Journal of Combinatorial Optimization, 2019, 37 : 1342 - 1350
  • [34] On the k-independence number of graphs
    Abiad, A.
    Coutinho, G.
    Fiol, M. A.
    DISCRETE MATHEMATICS, 2019, 342 (10) : 2875 - 2885
  • [35] The independence number of random interval graphs
    de la Vega, WF
    ALGORITHMS AND COMPLEXITY, 2000, 1767 : 59 - 62
  • [36] A research on independence number in cubic graphs
    Liu Donglin
    Wang Chunxiang
    PROCEEDINGS OF 2005 INTERNATIONAL CONFERENCE ON INNOVATION & MANAGEMENT, 2005, : 1283 - 1287
  • [37] Unified bounds for the independence number of graphs
    Zhou, Jiang
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2025, 77 (01): : 97 - 117
  • [38] Independence number of products of Kneser graphs
    Bresar, Bostjan
    Valencia-Pabon, Mario
    DISCRETE MATHEMATICS, 2019, 342 (04) : 1017 - 1027
  • [39] Independence number and disjoint theta graphs
    Fujita, Shinya
    Magnant, Colton
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [40] The Independence Number for the Generalized Petersen Graphs
    Fox, Joseph
    Gera, Ralucca
    Stanica, Pantelimon
    ARS COMBINATORIA, 2012, 103 : 439 - 451