On the broadcast independence number of circulant graphs

被引:1
|
作者
Laouar, Abdelamin [1 ]
Bouchemakh, Isma [1 ]
Sopena, Eric [2 ]
机构
[1] Univ Sci & Technol Houari Boumediene USTHB, Fac Math, Lab LIFORCE, BP 32 El Alia, Algiers 16111, Algeria
[2] Univ Bordeaux, Bordeaux INP, CNRS LaBRI, UMR 5800, F-33400 Talence, France
关键词
Broadcast; independent broadcast; circulant graph; DOMINATION; DIAMETER; NETWORKS;
D O I
10.1142/S1793830923500532
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An independent broadcast on a graph G is a function f : V -> {0, ..., diam(G)} such that (i) f(v) <= e(v) for every vertex v is an element of V (G), where diam(G) denotes the diameter of G and e(v) the eccentricity of vertex v, and (ii) d(u, v) > max{f(u), f(v)} for every two distinct vertices u and v with f(u)f(v) > 0. The broadcast independence number beta(b)(G) of G is then the maximum value of Sigma(v is an element of V) f(v), taken over all independent broadcasts on G. We prove that every circulant graph of the form C(n; 1, a), 3 <= a <= left perpendicularn/2right perpendicular, admits an optimal 2-bounded independent broadcast, that is, an independent broadcast f satisfying f(v) <= 2 for every vertex v, except when n = 2a + 1, or n = 2a and a is even. We then determine the broadcast independence number of various classes of such circulant graphs, and prove in particular that beta(b)(C(n; 1, a)) = alpha(C(n; 1, a)), except for C(n; 1, 2), C(2a + 1; 1, a), or C(2a; 1, a) with a not equal 2(p) and p >= 0, where alpha(C(n; 1, a)) denotes the independence number of C(n; 1, a).
引用
收藏
页数:36
相关论文
共 50 条
  • [1] The independence number of circulant triangle-free graphs
    Ayat, S. Masih
    Ayat, S. Majid
    Ghahramani, Meysam
    AIMS MATHEMATICS, 2020, 5 (04): : 3741 - 3750
  • [2] On the chromatic number of circulant graphs
    Barajas, Javier
    Serra, Oriol
    DISCRETE MATHEMATICS, 2009, 309 (18) : 5687 - 5696
  • [3] On the broadcast independence number of caterpillars
    Ahmane, Messaouda
    Bouchemakh, Isma
    Sopena, Eric
    DISCRETE APPLIED MATHEMATICS, 2018, 244 : 20 - 35
  • [4] The number of spanning trees in circulant graphs
    Zhang, YP
    Yong, XR
    Golin, MJ
    DISCRETE MATHEMATICS, 2000, 223 (1-3) : 337 - 350
  • [5] On the Lovasz number of certain circulant graphs
    Brimkov, VE
    Codenotti, B
    Crespi, V
    Leoncini, M
    ALGORITHMS AND COMPLEXITY, 2000, 1767 : 291 - 305
  • [6] On the clique number of integral circulant graphs
    Basic, Milan
    Ilic, Aleksandar
    APPLIED MATHEMATICS LETTERS, 2009, 22 (09) : 1406 - 1411
  • [7] The number of rooted forests in circulant graphs
    Grunwald, Lilya A.
    Mednykh, Ilya
    ARS MATHEMATICA CONTEMPORANEA, 2022, 22 (04)
  • [8] On the chromatic number of integral circulant graphs
    Ilic, Aleksandar
    Basic, Milan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (01) : 144 - 150
  • [9] On the reduced Euler characteristic of independence complexes of circulant graphs
    Rinaldo, Giancarlo
    Romeo, Francesco
    DISCRETE MATHEMATICS, 2018, 341 (09) : 2380 - 2386
  • [10] Independence Complexes of Well-Covered Circulant Graphs
    Earl, Jonathan
    Vander Meulen, Kevin N.
    Van Tuyl, Adam
    EXPERIMENTAL MATHEMATICS, 2016, 25 (04) : 441 - 451