Predictions of nuclear charge radii based on the convolutional neural network

被引:10
|
作者
Cao, Ying-Yu [1 ]
Guo, Jian-You [2 ]
Zhou, Bo [1 ,3 ,4 ]
机构
[1] Fudan Univ, Inst Modern Phys, Key Lab Nucl Phys & Ion Beam Applicat MOE, Shanghai 200433, Peoples R China
[2] Anhui Univ, Sch Phys & Optoelect Engn, Hefei 230601, Peoples R China
[3] NSFC, Shanghai Res Ctr Theoret Nucl Phys, Shanghai 200438, Peoples R China
[4] Fudan Univ, Shanghai 200438, Peoples R China
关键词
Nuclear charge radii; Machine learning; Neural network; ISOSPIN;
D O I
10.1007/s41365-023-01308-x
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
In this study, we developed a neural network that incorporates a fully connected layer with a convolutional layer to predict the nuclear charge radii based on the relationships between four local nuclear charge radii. The convolutional neural network (CNN) combines the isospin and pairing effects to describe the charge radii of nuclei with A >= 39 and Z >= 20. The developed neural network achieved a root mean square (RMS) deviation of 0.0195 fm for a dataset with 928 nuclei. Specifically, the CNN reproduced the trend of the inverted parabolic behavior and odd-even staggering observed in the calcium isotopic chain, demonstrating reliable predictive capability.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Explaining Convolutional Neural Network Predictions of Particle Size in the Underflow of a Hydrocyclone
    Olivier, Jacques
    Aldrich, Chris
    Liu, Xiu
    IFAC PAPERSONLINE, 2022, 55 (21): : 19 - 24
  • [42] Optimizing Privacy-Preserving Outsourced Convolutional Neural Network Predictions
    Li, Minghui
    Chow, Sherman S. M.
    Hu, Shengshan
    Yan, Yuejing
    Shen, Chao
    Wang, Qian
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2022, 19 (03) : 1592 - 1604
  • [43] Evaluating nuclear charge radii based on the mean mass-density parameter using BP neural networks
    Jiao, Bao-Bao
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2024, 33 (05):
  • [44] Correlations of nuclear charge radii with other nuclear observables
    Angeli, I.
    Marinova, K. P.
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2015, 42 (05)
  • [45] Nuclear mass predictions based on Bayesian neural network approach with pairing and shell effects
    Niu, Z. M.
    Liang, H. Z.
    PHYSICS LETTERS B, 2018, 778 : 48 - 53
  • [46] Convolutional Neural Network Based Segmentation
    Silvoster, Leena M.
    Govindan, V. K.
    COMPUTER NETWORKS AND INTELLIGENT COMPUTING, 2011, 157 : 190 - 197
  • [47] Nuclear radiation detection based on the convolutional neural network under public surveillance scenarios
    Yan, Zhangfa
    Zhang, Zhaohui
    Xu, Shuyu
    Ma, Juxiang
    Hou, Yansong
    Ji, Yingcai
    Sun, Lifeng
    Dai, Tiantian
    Wei, Qingyang
    OPEN PHYSICS, 2022, 20 (01): : 49 - 57
  • [48] A neural decoding strategy based on convolutional neural network
    Hua, Shaoyang
    Wang, Congqing
    Wu, Xuewei
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 39 (01) : 1033 - 1044
  • [49] Network Protocol Recognition Based on Convolutional Neural Network
    Wenbo Feng
    Zheng Hong
    Lifa Wu
    Menglin Fu
    Yihao Li
    Peihong Lin
    中国通信, 2020, 17 (04) : 125 - 139
  • [50] Network Protocol Recognition Based on Convolutional Neural Network
    Feng, Wenbo
    Hong, Zheng
    Wu, Lifa
    Fu, Menglin
    Li, Yihao
    Lin, Peihong
    CHINA COMMUNICATIONS, 2020, 17 (04) : 125 - 139