Predictions of nuclear charge radii based on the convolutional neural network

被引:10
|
作者
Cao, Ying-Yu [1 ]
Guo, Jian-You [2 ]
Zhou, Bo [1 ,3 ,4 ]
机构
[1] Fudan Univ, Inst Modern Phys, Key Lab Nucl Phys & Ion Beam Applicat MOE, Shanghai 200433, Peoples R China
[2] Anhui Univ, Sch Phys & Optoelect Engn, Hefei 230601, Peoples R China
[3] NSFC, Shanghai Res Ctr Theoret Nucl Phys, Shanghai 200438, Peoples R China
[4] Fudan Univ, Shanghai 200438, Peoples R China
关键词
Nuclear charge radii; Machine learning; Neural network; ISOSPIN;
D O I
10.1007/s41365-023-01308-x
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
In this study, we developed a neural network that incorporates a fully connected layer with a convolutional layer to predict the nuclear charge radii based on the relationships between four local nuclear charge radii. The convolutional neural network (CNN) combines the isospin and pairing effects to describe the charge radii of nuclei with A >= 39 and Z >= 20. The developed neural network achieved a root mean square (RMS) deviation of 0.0195 fm for a dataset with 928 nuclei. Specifically, the CNN reproduced the trend of the inverted parabolic behavior and odd-even staggering observed in the calcium isotopic chain, demonstrating reliable predictive capability.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] A new formula of nuclear charge radii
    Zhang, SQ
    Meng, J
    Zhou, SG
    Zeng, JY
    HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS-CHINESE EDITION, 2002, 26 (03): : 252 - 258
  • [32] An effective formula for nuclear charge radii
    Sheng, Zongqiang
    Fan, Guangwei
    Qian, Jianfa
    Hu, Jigang
    EUROPEAN PHYSICAL JOURNAL A, 2015, 51 (04): : 1 - 6
  • [33] Anomaly in the charge radii and nuclear structure
    Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
    不详
    不详
    不详
    Chin. Phys. Lett., 2006, 7 (1723-1726):
  • [34] Local relations of nuclear charge radii
    Bao, M.
    Zong, Y. Y.
    Zhao, Y. M.
    Arima, A.
    PHYSICAL REVIEW C, 2020, 102 (01)
  • [35] Nuclear Charge Radii of Silicon Isotopes
    Konig, Kristian
    Berengut, Julian C.
    Borschevsky, Anastasia
    Brinson, Alex
    Brown, B. Alex
    Dockery, Adam
    Elhatisari, Serdar
    Eliav, Ephraim
    Ruiz, Ronald F. Garcia
    Holt, Jason D.
    Hu, Bai-Shan
    Karthein, Jonas
    Lee, Dean
    Ma, Yuan-Zhuo
    Meissner, Ulf -G.
    Minamisono, Kei
    Oleynichenko, Alexander V.
    Pineda, Skyy V.
    Prosnyak, Sergey D.
    Reitsma, Marten L.
    Skripnikov, Leonid V.
    Vernon, Adam
    Zaitsevskii, Andrei
    PHYSICAL REVIEW LETTERS, 2024, 132 (16)
  • [36] Precise neural network predictions of energies and radii from the no-core shell model
    Wolfgruber, Tobias
    Knoell, Marco
    Roth, Robert
    PHYSICAL REVIEW C, 2024, 110 (01)
  • [37] An effective formula for nuclear charge radii
    Zongqiang Sheng
    Guangwei Fan
    Jianfa Qian
    Jigang Hu
    The European Physical Journal A, 2015, 51
  • [38] SYSTEMATICS OF NUCLEAR RMS CHARGE RADII
    BROWN, BA
    BRONK, CR
    HODGSON, PE
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 1984, 10 (12) : 1683 - 1701
  • [39] SYSTEMATICS OF NUCLEAR-CHARGE RADII
    NADJAKOV, EG
    MARINOVA, KP
    GANGRSKY, YP
    ATOMIC DATA AND NUCLEAR DATA TABLES, 1994, 56 (01) : 133 - 157
  • [40] zkCNN: Zero Knowledge Proofs for Convolutional Neural Network Predictions and Accuracy
    Liu, Tianyi
    Xie, Xiang
    Zhang, Yupeng
    CCS '21: PROCEEDINGS OF THE 2021 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2021, : 2968 - 2985