Predictions of nuclear charge radii based on the convolutional neural network

被引:10
|
作者
Cao, Ying-Yu [1 ]
Guo, Jian-You [2 ]
Zhou, Bo [1 ,3 ,4 ]
机构
[1] Fudan Univ, Inst Modern Phys, Key Lab Nucl Phys & Ion Beam Applicat MOE, Shanghai 200433, Peoples R China
[2] Anhui Univ, Sch Phys & Optoelect Engn, Hefei 230601, Peoples R China
[3] NSFC, Shanghai Res Ctr Theoret Nucl Phys, Shanghai 200438, Peoples R China
[4] Fudan Univ, Shanghai 200438, Peoples R China
关键词
Nuclear charge radii; Machine learning; Neural network; ISOSPIN;
D O I
10.1007/s41365-023-01308-x
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
In this study, we developed a neural network that incorporates a fully connected layer with a convolutional layer to predict the nuclear charge radii based on the relationships between four local nuclear charge radii. The convolutional neural network (CNN) combines the isospin and pairing effects to describe the charge radii of nuclei with A >= 39 and Z >= 20. The developed neural network achieved a root mean square (RMS) deviation of 0.0195 fm for a dataset with 928 nuclei. Specifically, the CNN reproduced the trend of the inverted parabolic behavior and odd-even staggering observed in the calcium isotopic chain, demonstrating reliable predictive capability.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Investigations on the nuclear charge radii
    Sheng Zong-Qiang
    Fan Guang-Wei
    Qian Jian-Fa
    ACTA PHYSICA SINICA, 2015, 64 (11)
  • [22] Nuclear Charge Radii Systematics
    Marinova, Krassimira
    JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 2015, 44 (03)
  • [23] Validating the integrity of Convolutional Neural Network predictions based on zero-knowledge proof
    Fan, Yongkai
    Xu, Binyuan
    Zhang, Linlin
    Song, Jinbao
    Zomaya, Albert
    Li, Kuan-Ching
    INFORMATION SCIENCES, 2023, 625 : 125 - 140
  • [24] LigityScore: Convolutional Neural Network for Binding-affinity Predictions
    Azzopardi, Joseph
    Ebejer, Jean Paul
    PROCEEDINGS OF THE 14TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES, VOL 3: BIOINFORMATICS, 2021, : 38 - 49
  • [25] Nuclear charge radii: density functional theory meets Bayesian neural networks
    Utama, R.
    Chen, Wei-Chia
    Piekarewicz, J.
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2016, 43 (11)
  • [26] A new formula of nuclear charge radii
    Zhang, Shuang-Quan
    Meng, Jie
    Zhou, Shan-Gui
    Zeng, Jin-Yan
    Kao Neng Wu Li Yu Ho Wu Li/High Energy Physics and Nuclear Physics, 2002, 26 (03):
  • [27] Monthly extended ocean predictions based on a convolutional neural network via the transfer learning method
    Miao, Yonglan
    Zhang, Xuefeng
    Li, Yunbo
    Zhang, Lianxin
    Zhang, Dianjun
    FRONTIERS IN MARINE SCIENCE, 2023, 9
  • [28] Anomaly in the charge radii and nuclear structure
    Zhang Hong-Fei
    Zuo Wei
    Li Jun-Qing
    Im, Soojae
    Ma Zhong-Yu
    Chen Bao-Qiu
    CHINESE PHYSICS LETTERS, 2006, 23 (07) : 1723 - 1726
  • [29] A novel convolutional neural network based approach to predictions of process dynamic time delay sequences
    Yang, Bo
    Li, Hongguang
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2018, 174 : 56 - 61
  • [30] New nuclear charge radii database
    Boboshin I.N.
    Varlamov V.V.
    Gangrsky Yu.P.
    Ishkhanov B.S.
    Komarov S.Yu.
    Marinova K.P.
    Bulletin of the Russian Academy of Sciences: Physics, 2009, 73 (6) : 810 - 815