Orientable domination in product-like graphs

被引:0
|
作者
Anderson, Sarah [1 ]
Bresar, Bostjan [2 ,3 ]
Klavzar, Sandi [2 ,3 ,4 ]
Kuenzel, Kirsti [5 ]
Rall, Douglas F. [6 ]
机构
[1] Univ St Thomas, Dept Math, St Paul, MN USA
[2] Univ Maribor, Fac Nat Sci & Math, Maribor, Slovenia
[3] Inst Math Phys & Mech, Ljubljana, Slovenia
[4] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[5] Trinity Coll, Dept Math, Hartford, CT USA
[6] Furman Univ, Dept Math, Greenville, SC USA
关键词
Digraph; Domination; Orientable domination number; Packing; Graph product; Corona graph; PARAMETERS; PACKING; NUMBER; SETS;
D O I
10.1016/j.dam.2022.11.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The orientable domination number, DOM(G), of a graph G is the largest domination number over all orientations of G. In this paper, DOM is studied on different product graphs and related graph operations. The orientable domination number of arbitrary corona products is determined, while sharp lower and upper bounds are proved for Cartesian and lexicographic products. A result of Chartrand et al. (1996) is extended by establishing the values of DOM(Kn1,n2,n3) for arbitrary positive integers n1, n2 and n3. While considering the orientable domination number of lexicographic product graphs, we answer in the negative a question concerning domination and packing numbers in acyclic digraphs posed in Bresar et al. (2022).
引用
收藏
页码:62 / 69
页数:8
相关论文
共 50 条
  • [21] THE GEODETIC DOMINATION NUMBER FOR THE PRODUCT OF GRAPHS
    Chellathurai, S. Robinson
    Vijaya, S. Padma
    TRANSACTIONS ON COMBINATORICS, 2014, 3 (04) : 19 - 30
  • [22] Double domination in rooted product graphs
    Cabrera-Martinez, Abel
    Estrada-Moreno, Alejandro
    DISCRETE APPLIED MATHEMATICS, 2023, 339 : 127 - 135
  • [23] Double domination in lexicographic product graphs
    Cabrera Martinez, Abel
    Cabrera Garcia, Suitberto
    Rodriguez-Velazquez, J. A.
    DISCRETE APPLIED MATHEMATICS, 2020, 284 : 290 - 300
  • [24] Domination number of modular product graphs
    Bermudo, Sergio
    Peterin, Iztok
    Sedlar, Jelena
    Skrekovski, Riste
    COMPUTATIONAL & APPLIED MATHEMATICS, 2025, 44 (01):
  • [25] Dot product graphs and domination number
    Dina Saleh
    Nefertiti Megahed
    Journal of the Egyptian Mathematical Society, 28 (1)
  • [26] Secure domination in rooted product graphs
    Hernandez-Ortiz, Rangel
    Montejano, Luis Pedro
    Rodriguez-Velazquez, Juan Alberto
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2021, 41 (02) : 401 - 413
  • [27] Total Domination in Rooted Product Graphs
    Cabrera Martinez, Abel
    Rodriguez-Velazquez, Juan A.
    SYMMETRY-BASEL, 2020, 12 (11): : 1 - 11
  • [28] On the Roman domination in the lexicographic product of graphs
    Sumenjak, Tadeja Kraner
    Pavlic, Polona
    Tepeh, Aleksandra
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (13-14) : 2030 - 2036
  • [29] ON TOTAL DOMINATION IN THE CARTESIAN PRODUCT OF GRAPHS
    Bresar, Bostjan
    Hartinger, Tatiana Romina
    Kos, Tim
    Milanic, Martin
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2018, 38 (04) : 963 - 976
  • [30] Italian Domination in Rooted Product Graphs
    R. Hernández-Ortiz
    L. P. Montejano
    J. A. Rodríguez-Velázquez
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 497 - 508