Secure domination in rooted product graphs

被引:3
|
作者
Hernandez-Ortiz, Rangel [1 ]
Montejano, Luis Pedro [2 ]
Rodriguez-Velazquez, Juan Alberto [2 ]
机构
[1] Univ Autonoma Metropolitana, Dept Matemat Aplicadas & Sistemas, Mexico City, DF, Mexico
[2] Univ Rovira & Virgili, Dept Engn Informat & Matemat, Av Paisos Catalans 26, Tarragona 43007, Spain
关键词
Secure domination; Rooted product graphs; Corona product graphs; PROTECTION;
D O I
10.1007/s10878-020-00679-w
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A secure dominating set of a graph G is a dominating set S satisfying that for every vertex v is an element of V(G)\S there exists a neighbour u is an element of S of v such that (S boolean OR {v})\{u} is a dominating set as well. The secure domination number, denoted by gamma(s) (G), is the minimum cardinality among all secure dominating sets of G. This concept was introduced in 2005 by Cockayne et al. and studied further in a number of works. The problem of computing the secure domination number is NP-Hard. This suggests finding the secure domination number for special classes of graphs or obtaining tight bounds on this invariant. The aim of this work is to obtain closed formulas for the secure domination number of rooted product graphs. We show that for any graph G of order n(G) and any graph H with root v, the secure domination number of the rooted product graph G. v H satisfies one of the following three formulas,gamma(s) (G o(nu) H) = n(G)(gamma(s)( H) - 1) + gamma (G), gamma(s)(G omicron(v) H) = n(G)(gamma(s) ( H) - 1) + gamma(s) (G) o(nu) gamma(s) (G o(nu) H) = n(G)gamma(s) (H), where gamma (G) denotes the domination number of G. We also characterize the graphs that satisfy each of these expressions. As a particular case of the study, we derive the corresponding results for corona graphs.
引用
收藏
页码:401 / 413
页数:13
相关论文
共 50 条
  • [1] Secure domination in rooted product graphs
    Rangel Hernández-Ortiz
    Luis Pedro Montejano
    Juan Alberto Rodríguez-Velázquez
    Journal of Combinatorial Optimization, 2021, 41 : 401 - 413
  • [2] Secure Total Domination in Rooted Product Graphs
    Cabrera Martinez, Abel
    Estrada-Moreno, Alejandro
    Rodriguez-Velazquez, Juan A.
    MATHEMATICS, 2020, 8 (04)
  • [3] Double domination in rooted product graphs
    Cabrera-Martinez, Abel
    Estrada-Moreno, Alejandro
    DISCRETE APPLIED MATHEMATICS, 2023, 339 : 127 - 135
  • [4] Italian Domination in Rooted Product Graphs
    Hernandez-Ortiz, R.
    Montejano, L. P.
    Rodriguez-Velazquez, J. A.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (01) : 497 - 508
  • [5] Total Domination in Rooted Product Graphs
    Cabrera Martinez, Abel
    Rodriguez-Velazquez, Juan A.
    SYMMETRY-BASEL, 2020, 12 (11): : 1 - 11
  • [6] Italian Domination in Rooted Product Graphs
    R. Hernández-Ortiz
    L. P. Montejano
    J. A. Rodríguez-Velázquez
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 497 - 508
  • [7] Weak Roman domination in rooted product graphs
    Hernandez-Ortiz, Rangel
    Pedro Montejano, Luis
    Rodriguez-Velazquez, Juan Alberto
    AIMS MATHEMATICS, 2021, 6 (04): : 3641 - 3653
  • [8] Roman domination in direct product graphs and rooted product graphs1
    Martinez, Abel Cabrera
    Peterin, Iztok
    Yero, Ismael G.
    AIMS MATHEMATICS, 2021, 6 (10): : 11084 - 11096
  • [9] Domination-Related Parameters in Rooted Product Graphs
    Dorota Kuziak
    Magdalena Lemańska
    Ismael G. Yero
    Bulletin of the Malaysian Mathematical Sciences Society, 2016, 39 : 199 - 217
  • [10] Domination-Related Parameters in Rooted Product Graphs
    Kuziak, Dorota
    Lemanska, Magdalena
    Yero, Ismael G.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2016, 39 (01) : 199 - 217