Secure domination in rooted product graphs

被引:3
|
作者
Hernandez-Ortiz, Rangel [1 ]
Montejano, Luis Pedro [2 ]
Rodriguez-Velazquez, Juan Alberto [2 ]
机构
[1] Univ Autonoma Metropolitana, Dept Matemat Aplicadas & Sistemas, Mexico City, DF, Mexico
[2] Univ Rovira & Virgili, Dept Engn Informat & Matemat, Av Paisos Catalans 26, Tarragona 43007, Spain
关键词
Secure domination; Rooted product graphs; Corona product graphs; PROTECTION;
D O I
10.1007/s10878-020-00679-w
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A secure dominating set of a graph G is a dominating set S satisfying that for every vertex v is an element of V(G)\S there exists a neighbour u is an element of S of v such that (S boolean OR {v})\{u} is a dominating set as well. The secure domination number, denoted by gamma(s) (G), is the minimum cardinality among all secure dominating sets of G. This concept was introduced in 2005 by Cockayne et al. and studied further in a number of works. The problem of computing the secure domination number is NP-Hard. This suggests finding the secure domination number for special classes of graphs or obtaining tight bounds on this invariant. The aim of this work is to obtain closed formulas for the secure domination number of rooted product graphs. We show that for any graph G of order n(G) and any graph H with root v, the secure domination number of the rooted product graph G. v H satisfies one of the following three formulas,gamma(s) (G o(nu) H) = n(G)(gamma(s)( H) - 1) + gamma (G), gamma(s)(G omicron(v) H) = n(G)(gamma(s) ( H) - 1) + gamma(s) (G) o(nu) gamma(s) (G o(nu) H) = n(G)gamma(s) (H), where gamma (G) denotes the domination number of G. We also characterize the graphs that satisfy each of these expressions. As a particular case of the study, we derive the corresponding results for corona graphs.
引用
收藏
页码:401 / 413
页数:13
相关论文
共 50 条
  • [21] Secure domination critical graphs
    Grobler, P. J. P.
    Mynhardt, C. M.
    DISCRETE MATHEMATICS, 2009, 309 (19) : 5820 - 5827
  • [22] SECURE PAIRED DOMINATION IN GRAPHS
    Kang, Jian
    Mynhardt, C. M.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2014, 11 (02) : 177 - 197
  • [23] Secure Italian domination in graphs
    M. Dettlaff
    M. Lemańska
    J. A. Rodríguez-Velázquez
    Journal of Combinatorial Optimization, 2021, 41 : 56 - 72
  • [24] Secure Italian domination in graphs
    Dettlaff, M.
    Lemanska, M.
    Rodriguez-Velazquez, J. A.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2021, 41 (01) : 56 - 72
  • [25] SECURE HOP DOMINATION IN GRAPHS
    Mollejon, Reynaldo, V
    Canoy Jr, Sergio R.
    Canoy, John Gabriel E.
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2019, 18 (12): : 1651 - 1663
  • [26] Secure total domination in graphs
    Benecke, S.
    Cockayne, E. J.
    Mynhardt, C. M.
    UTILITAS MATHEMATICA, 2007, 74 : 247 - 259
  • [27] SECURE DOMINATION IN MYCEILSKI GRAPHS
    Mercy, J. Annaal
    Raj, L. Benedict Michael
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2023, 13 : 539 - 545
  • [28] Secure Restrained Domination in Graphs
    Pushpam P.R.L.
    Suseendran C.
    Mathematics in Computer Science, 2015, 9 (2) : 239 - 247
  • [29] Co-Secure and Secure Domination in Graphs
    Arumugam, S.
    Ebadi, Karam
    Manrique, Martin
    UTILITAS MATHEMATICA, 2014, 94 : 167 - 182
  • [30] Domination and upper domination of direct product graphs
    Defant, Colin
    Iyer, Sumun
    DISCRETE MATHEMATICS, 2018, 341 (10) : 2742 - 2752