Domination and upper domination of direct product graphs

被引:10
|
作者
Defant, Colin [1 ]
Iyer, Sumun [2 ]
机构
[1] Princeton Univ, Princeton, NJ 08544 USA
[2] Cornell Univ, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Domination number; Upper domination number; Direct product graph; Unitary Cayley graph; Jacobsthal's function; Balanced; Complete multipartite graph; UNITARY CAYLEY-GRAPHS; CONSECUTIVE PRIMES; LARGE GAPS;
D O I
10.1016/j.disc.2018.06.031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X-z/nz denote the unitary Cayley graph of Z/nZ. We present results on the tightness of the known inequality gamma (X-z/nz) <= gamma(t)(X-z/nz) <= g(n), where gamma and gamma(t) denote the domination number and total domination number, respectively, and g is the arithmetic function known as Jacobsthal's function. In particular, we construct integers n with arbitrarily many distinct prime factors such that gamma(X-z/nz) <= gamma(t) (X-z/nz) <= g(n) - 1. We give lower bounds for the domination numbers of direct products of complete graphs and present a conjecture for the exact values of the upper domination numbers of direct products of balanced, complete multipartite graphs. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:2742 / 2752
页数:11
相关论文
共 50 条
  • [1] On Upper Total Domination Versus Upper Domination in Graphs
    Zhu, Enqiang
    Liu, Chanjuan
    Deng, Fei
    Rao, Yongsheng
    GRAPHS AND COMBINATORICS, 2019, 35 (03) : 767 - 778
  • [2] On Upper Total Domination Versus Upper Domination in Graphs
    Enqiang Zhu
    Chanjuan Liu
    Fei Deng
    Yongsheng Rao
    Graphs and Combinatorics, 2019, 35 : 767 - 778
  • [4] Lower bounds for the domination number and the total domination number of direct product graphs
    Mekis, Gasper
    DISCRETE MATHEMATICS, 2010, 310 (23) : 3310 - 3317
  • [5] Roman domination in direct product graphs and rooted product graphs1
    Martinez, Abel Cabrera
    Peterin, Iztok
    Yero, Ismael G.
    AIMS MATHEMATICS, 2021, 6 (10): : 11084 - 11096
  • [6] Perfect Domination, Roman Domination and Perfect Roman Domination in Lexicographic Product Graphs
    Cabrera Martinez, A.
    Garcia-Gomez, C.
    Rodriguez-Velazquez, J. A.
    FUNDAMENTA INFORMATICAE, 2022, 185 (03) : 201 - 220
  • [7] Domination criticality in product graphs
    Chithra, M. R.
    Vijayakumar, A.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2015, 12 (01) : 19 - 25
  • [8] Upper paired domination in graphs
    Jiang, Huiqin
    Wu, Pu
    Zhang, Jingzhong
    Rao, Yongsheng
    AIMS MATHEMATICS, 2022, 7 (01): : 1185 - 1197
  • [9] Domination in lexicographic product graphs
    Zhang, Xindong
    Liu, Juan
    Meng, Jixiang
    ARS COMBINATORIA, 2011, 101 : 251 - 256
  • [10] Upper eccentric domination in graphs
    Bhanumathi, M.
    Abirami, R. Meenal
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2019, 22 (05): : 835 - 846