Orientable domination in product-like graphs

被引:0
|
作者
Anderson, Sarah [1 ]
Bresar, Bostjan [2 ,3 ]
Klavzar, Sandi [2 ,3 ,4 ]
Kuenzel, Kirsti [5 ]
Rall, Douglas F. [6 ]
机构
[1] Univ St Thomas, Dept Math, St Paul, MN USA
[2] Univ Maribor, Fac Nat Sci & Math, Maribor, Slovenia
[3] Inst Math Phys & Mech, Ljubljana, Slovenia
[4] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[5] Trinity Coll, Dept Math, Hartford, CT USA
[6] Furman Univ, Dept Math, Greenville, SC USA
关键词
Digraph; Domination; Orientable domination number; Packing; Graph product; Corona graph; PARAMETERS; PACKING; NUMBER; SETS;
D O I
10.1016/j.dam.2022.11.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The orientable domination number, DOM(G), of a graph G is the largest domination number over all orientations of G. In this paper, DOM is studied on different product graphs and related graph operations. The orientable domination number of arbitrary corona products is determined, while sharp lower and upper bounds are proved for Cartesian and lexicographic products. A result of Chartrand et al. (1996) is extended by establishing the values of DOM(Kn1,n2,n3) for arbitrary positive integers n1, n2 and n3. While considering the orientable domination number of lexicographic product graphs, we answer in the negative a question concerning domination and packing numbers in acyclic digraphs posed in Bresar et al. (2022).
引用
收藏
页码:62 / 69
页数:8
相关论文
共 50 条
  • [41] Unequal error protection with product-like turbo codes
    Buch, G
    Burkert, F
    1998 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 1998, : 60 - 60
  • [42] From Total Roman Domination in Lexicographic Product Graphs to Strongly Total Roman Domination in Graphs
    Almerich-Chulia, Ana
    Cabrera Martinez, Abel
    Hernandez Mira, Frank Angel
    Martin-Concepcion, Pedro
    SYMMETRY-BASEL, 2021, 13 (07):
  • [43] INDEPENDENT SEMITOTAL DOMINATION IN THE LEXICOGRAPHIC PRODUCT OF GRAPHS
    Susada, Bryan L.
    Eballe, Rolito G.
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2023, 39 (02): : 237 - 244
  • [44] Certain domination numbers for Cartesian product of graphs
    Arulanand, S.
    Rajan, R. Sundara
    Prabhu, S.
    Stephen, Sudeep
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2024, 27 (03): : 1045 - 1058
  • [45] Total Roman domination in the lexicographic product of graphs
    Campanelli, Nicolas
    Kuziak, Dorota
    DISCRETE APPLIED MATHEMATICS, 2019, 263 : 88 - 95
  • [46] Convex domination in the composition and cartesian product of graphs
    Labendia, Mhelmar A.
    Canoy, Sergio R., Jr.
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2012, 62 (04) : 1003 - 1009
  • [47] PRIME FACTORIZATION AND DOMINATION IN THE HIERARCHICAL PRODUCT OF GRAPHS
    Anderson, S. E.
    Guo, Y.
    Tenney, A.
    Wash, K. A.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2017, 37 (04) : 873 - 890
  • [48] Domination polynomial of lexicographic product of specific graphs
    Alikhani, Saeid
    Jahari, Somayeh
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2018, 39 (05): : 1019 - 1028
  • [49] GLOBAL EQUITABLE DOMINATION IN CARTESIAN PRODUCT OF GRAPHS
    Vaidya, S. K.
    Pandit, R. M.
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2024, 41 (05): : 341 - 356
  • [50] EDGE DOMINATION IN SOME BRICK PRODUCT GRAPHS
    Kumar, U. Vijaya Chandra
    Murali, R.
    Girisha, A.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2020, 10 (01): : 173 - 180