Sharp weak type estimates for a family of Cardoba bases

被引:1
|
作者
Hagelstein, Paul [1 ]
Stokolos, Alex [2 ]
机构
[1] Baylor Univ, Dept Math, Waco, TX 76798 USA
[2] Georgia Southern Univ, Dept Math Sci, Statesboro, GA 30460 USA
关键词
Maximal functions; Differentiation basis; Geometric maximal operator; DIFFERENTIATION;
D O I
10.1007/s13348-022-00366-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let B be a collection of rectangular parallelepipeds in R-3 whose sides are parallel to the coordinate axes and such that B consists of parallelepipeds with sidelengths of the form s, t, 2(N) st, where s, t > 0 and N lies in a nonempty subset S of the natural numbers. In this paper, we prove the following: If S is a finite set, then the associated geometric maximal operator M-B satisfies the weak type estimate vertical bar{x is an element of R-3 : M(B)f(x) > alpha}vertical bar <= C integral(R3)vertical bar f vertical bar alpha(1 + log(+)vertical bar f vertical bar/alpha) but does not satisfy an estimate of the form vertical bar{x is an element of R-3 : M(B)f(x) > alpha}vertical bar <= C integral(R3) phi vertical bar f vertical bar/alpha) for any convex increasing function phi : [0, infinity) -> [0, infinity) satisfying the condition lim(x ->infinity) phi(x)/x(log(1 + x)) = 0. Alternatively, if S is an infinite set, then the associated geometric maximal operator M-B satisfies the weak type estimate vertical bar{x is an element of R-3 : M(B)f(x) > alpha}vertical bar <= C integral(R3) vertical bar f vertical bar/alpha (1 + log+ vertical bar f vertical bar/alpha)(2) but does not satisfy an estimate of the form vertical bar{x is an element of R-3 : M(B)f(x) > alpha}vertical bar <= C integral(R3) phi(vertical bar f vertical bar/alpha) for any convex increasing function phi : [0, infinity) -> [0, infinity) satisfying the condition lim(x ->infinity) phi(x)/x(log(1 + x))(2) = 0.
引用
收藏
页码:595 / 603
页数:9
相关论文
共 50 条
  • [1] Sharp Weak Type Estimates for a Family of Soria Bases
    Dmitrishin, Dmitry
    Hagelstein, Paul
    Stokolos, Alex
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (05)
  • [2] Sharp Weak Type Estimates for a Family of Soria Bases
    Dmitry Dmitrishin
    Paul Hagelstein
    Alex Stokolos
    The Journal of Geometric Analysis, 2022, 32
  • [3] SHARP WEAK TYPE ESTIMATES FOR A FAMILY OF ZYGMUND BASES
    Hagelstein, Paul
    Stokolos, Alex
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (05) : 2049 - 2057
  • [4] Sharp weak type estimates for a family of Córdoba bases
    Paul Hagelstein
    Alex Stokolos
    Collectanea Mathematica, 2023, 74 : 595 - 603
  • [5] Sharp weak-type estimates for maximal operators associated to rare bases
    Hagelstein, Paul
    Oniani, Giorgi
    Stokolos, Alex
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2023, 55 (04) : 1749 - 1759
  • [6] Sharp weak type estimates for Riesz transforms
    Adam Osȩkowski
    Monatshefte für Mathematik, 2014, 174 : 305 - 327
  • [7] Sharp weak type estimates for Riesz transforms
    Osekowski, Adam
    MONATSHEFTE FUR MATHEMATIK, 2014, 174 (02): : 305 - 327
  • [8] SHARP WEAK ESTIMATES FOR HARDY-TYPE OPERATORS
    Gao, Guilian
    Hu, Xiaomin
    Zhang, Chunjie
    ANNALS OF FUNCTIONAL ANALYSIS, 2016, 7 (03): : 421 - 433
  • [9] Sharp restricted weak-type estimates for sparse operators
    Fay, Irina Holmes
    Rey, Guillermo
    Skreb, Kristina Ana
    JOURNAL OF FUNCTIONAL ANALYSIS, 2025, 288 (11)
  • [10] Extremizers and sharp weak-type estimates for positive dyadic shifts
    Rey, Guillermo
    Reznikov, Alexander
    ADVANCES IN MATHEMATICS, 2014, 254 : 664 - 681