Sharp weak type estimates for a family of Córdoba bases

被引:0
|
作者
Paul Hagelstein
Alex Stokolos
机构
[1] Baylor University,Department of Mathematics
[2] Georgia Southern University,Department of Mathematical Sciences
来源
Collectanea Mathematica | 2023年 / 74卷
关键词
Maximal functions; Differentiation basis; Geometric maximal operator; Primary 42B25;
D O I
暂无
中图分类号
学科分类号
摘要
Let B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {B}$$\end{document} be a collection of rectangular parallelepipeds in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^3$$\end{document} whose sides are parallel to the coordinate axes and such that B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {B}$$\end{document} consists of parallelepipeds with sidelengths of the form s,t,2Nst\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s, t, 2^N st$$\end{document}, where s,t>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s, t > 0$$\end{document} and N lies in a nonempty subset S of the natural numbers. In this paper, we prove the following: If S is a finite set, then the associated geometric maximal operator MB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_\mathcal {B}$$\end{document} satisfies the weak type estimate x∈R3:MBf(x)>α≤C∫R3|f|α1+log+|f|α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left| \left\{ x \in \mathbb {R}^3 : M_{\mathcal {B}}f(x) > \alpha \right\} \right| \le C \int _{\mathbb {R}^3} \frac{|f|}{\alpha }\left( 1 + \log ^+ \frac{|f|}{\alpha }\right) \; \end{aligned}$$\end{document}but does not satisfy an estimate of the form x∈R3:MBf(x)>α≤C∫R3ϕ|f|α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left| \left\{ x \in \mathbb {R}^3 : M_{\mathcal {B}}f(x) > \alpha \right\} \right| \le C \int _{\mathbb {R}^3} \phi \left( \frac{|f|}{\alpha }\right) \end{aligned}$$\end{document}for any convex increasing function ϕ:[0,∞)→[0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi : [0, \infty ) \rightarrow [0, \infty )$$\end{document} satisfying the condition limx→∞ϕ(x)x(log(1+x))=0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \lim _{x \rightarrow \infty }\frac{\phi (x)}{x (\log (1 + x))} = 0\;. \end{aligned}$$\end{document}Alternatively, if S is an infinite set, then the associated geometric maximal operator MB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_\mathcal {B}$$\end{document} satisfies the weak type estimate x∈R3:MBf(x)>α≤C∫R3|f|α1+log+|f|α2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left| \left\{ x \in \mathbb {R}^3 : M_{\mathcal {B}}f(x) > \alpha \right\} \right| \le C \int _{\mathbb {R}^3} \frac{|f|}{\alpha } \left( 1 + \log ^+ \frac{|f|}{\alpha }\right) ^{2} \end{aligned}$$\end{document}but does not satisfy an estimate of the form x∈R3:MBf(x)>α≤C∫R3ϕ|f|α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left| \left\{ x \in \mathbb {R}^3 : M_{\mathcal {B}}f(x) > \alpha \right\} \right| \le C \int _{\mathbb {R}^3} \phi \left( \frac{|f|}{\alpha }\right) \end{aligned}$$\end{document}for any convex increasing function ϕ:[0,∞)→[0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi : [0, \infty ) \rightarrow [0, \infty )$$\end{document} satisfying the condition limx→∞ϕ(x)x(log(1+x))2=0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \lim _{x \rightarrow \infty }\frac{\phi (x)}{x (\log (1 + x))^2} = 0. \end{aligned}$$\end{document}
引用
收藏
页码:595 / 603
页数:8
相关论文
共 50 条
  • [1] Sharp weak type estimates for a family of Cardoba bases
    Hagelstein, Paul
    Stokolos, Alex
    COLLECTANEA MATHEMATICA, 2023, 74 (03) : 595 - 603
  • [2] Sharp Weak Type Estimates for a Family of Soria Bases
    Dmitrishin, Dmitry
    Hagelstein, Paul
    Stokolos, Alex
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (05)
  • [3] Sharp Weak Type Estimates for a Family of Soria Bases
    Dmitry Dmitrishin
    Paul Hagelstein
    Alex Stokolos
    The Journal of Geometric Analysis, 2022, 32
  • [4] SHARP WEAK TYPE ESTIMATES FOR A FAMILY OF ZYGMUND BASES
    Hagelstein, Paul
    Stokolos, Alex
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (05) : 2049 - 2057
  • [5] Sharp weak-type estimates for maximal operators associated to rare bases
    Hagelstein, Paul
    Oniani, Giorgi
    Stokolos, Alex
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2023, 55 (04) : 1749 - 1759
  • [6] Sharp weak type estimates for Riesz transforms
    Adam Osȩkowski
    Monatshefte für Mathematik, 2014, 174 : 305 - 327
  • [7] Sharp weak type estimates for Riesz transforms
    Osekowski, Adam
    MONATSHEFTE FUR MATHEMATIK, 2014, 174 (02): : 305 - 327
  • [8] SHARP WEAK ESTIMATES FOR HARDY-TYPE OPERATORS
    Gao, Guilian
    Hu, Xiaomin
    Zhang, Chunjie
    ANNALS OF FUNCTIONAL ANALYSIS, 2016, 7 (03): : 421 - 433
  • [9] Sharp restricted weak-type estimates for sparse operators
    Fay, Irina Holmes
    Rey, Guillermo
    Skreb, Kristina Ana
    JOURNAL OF FUNCTIONAL ANALYSIS, 2025, 288 (11)
  • [10] Extremizers and sharp weak-type estimates for positive dyadic shifts
    Rey, Guillermo
    Reznikov, Alexander
    ADVANCES IN MATHEMATICS, 2014, 254 : 664 - 681