Sharp weak type estimates for a family of Cardoba bases

被引:1
|
作者
Hagelstein, Paul [1 ]
Stokolos, Alex [2 ]
机构
[1] Baylor Univ, Dept Math, Waco, TX 76798 USA
[2] Georgia Southern Univ, Dept Math Sci, Statesboro, GA 30460 USA
关键词
Maximal functions; Differentiation basis; Geometric maximal operator; DIFFERENTIATION;
D O I
10.1007/s13348-022-00366-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let B be a collection of rectangular parallelepipeds in R-3 whose sides are parallel to the coordinate axes and such that B consists of parallelepipeds with sidelengths of the form s, t, 2(N) st, where s, t > 0 and N lies in a nonempty subset S of the natural numbers. In this paper, we prove the following: If S is a finite set, then the associated geometric maximal operator M-B satisfies the weak type estimate vertical bar{x is an element of R-3 : M(B)f(x) > alpha}vertical bar <= C integral(R3)vertical bar f vertical bar alpha(1 + log(+)vertical bar f vertical bar/alpha) but does not satisfy an estimate of the form vertical bar{x is an element of R-3 : M(B)f(x) > alpha}vertical bar <= C integral(R3) phi vertical bar f vertical bar/alpha) for any convex increasing function phi : [0, infinity) -> [0, infinity) satisfying the condition lim(x ->infinity) phi(x)/x(log(1 + x)) = 0. Alternatively, if S is an infinite set, then the associated geometric maximal operator M-B satisfies the weak type estimate vertical bar{x is an element of R-3 : M(B)f(x) > alpha}vertical bar <= C integral(R3) vertical bar f vertical bar/alpha (1 + log+ vertical bar f vertical bar/alpha)(2) but does not satisfy an estimate of the form vertical bar{x is an element of R-3 : M(B)f(x) > alpha}vertical bar <= C integral(R3) phi(vertical bar f vertical bar/alpha) for any convex increasing function phi : [0, infinity) -> [0, infinity) satisfying the condition lim(x ->infinity) phi(x)/x(log(1 + x))(2) = 0.
引用
收藏
页码:595 / 603
页数:9
相关论文
共 50 条
  • [31] Weak type estimates for commutators on Herz-type spaces
    Komori, Y
    TAIWANESE JOURNAL OF MATHEMATICS, 2003, 7 (03): : 449 - 460
  • [32] Sharp weighted weak type (∞, ∞) inequality for differentially subordinate martingales
    Brzozowski, Michal
    Osekowski, Adam
    STATISTICS & PROBABILITY LETTERS, 2019, 155
  • [33] Sharp bases and mappings
    Mou, L
    Ohta, H
    HOUSTON JOURNAL OF MATHEMATICS, 2005, 31 (01): : 227 - 238
  • [34] SHARP ESTIMATES IN SOME INEQUALITIES OF ZYGMUND TYPE FOR RIESZ TRANSFORMS
    Aarao, Jorge
    O'Neill, Michael D.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (12) : 4227 - 4233
  • [35] On sharp bilinear Strichartz estimates of Ozawa-Tsutsumi type
    Bennett, Jonathan
    Bez, Neal
    Jeavons, Chris
    Pattakos, Nikolaos
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2017, 69 (02) : 459 - 476
  • [36] Sharp weak-type inequalities for differentially subordinated martingales
    Osekowski, Adam
    BERNOULLI, 2009, 15 (03) : 871 - 897
  • [37] Sharp estimates for commutators of bilinear operators on Morrey type spaces
    Wang, Dinghuai
    Zhou, Jiang
    Teng, Zhidong
    HOKKAIDO MATHEMATICAL JOURNAL, 2020, 49 (01) : 165 - 199
  • [38] Sharp estimates for partial derivative on convex domains of finite type
    Cumenge, A
    ARKIV FOR MATEMATIK, 2001, 39 (01): : 1 - 25
  • [39] Sharp estimates for hyperbolic metrics and covering theorems of Landau type
    Baernstein, A
    Eremenko, A
    Fryntov, A
    Solynin, A
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2005, 30 (01) : 113 - 133
  • [40] Weak Sharp Type Solutions for Some Variational Integral Inequalities
    Treanta, Savin
    Saeed, Tareq
    AXIOMS, 2024, 13 (04)