Sharp weak type estimates for a family of Cardoba bases

被引:1
|
作者
Hagelstein, Paul [1 ]
Stokolos, Alex [2 ]
机构
[1] Baylor Univ, Dept Math, Waco, TX 76798 USA
[2] Georgia Southern Univ, Dept Math Sci, Statesboro, GA 30460 USA
关键词
Maximal functions; Differentiation basis; Geometric maximal operator; DIFFERENTIATION;
D O I
10.1007/s13348-022-00366-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let B be a collection of rectangular parallelepipeds in R-3 whose sides are parallel to the coordinate axes and such that B consists of parallelepipeds with sidelengths of the form s, t, 2(N) st, where s, t > 0 and N lies in a nonempty subset S of the natural numbers. In this paper, we prove the following: If S is a finite set, then the associated geometric maximal operator M-B satisfies the weak type estimate vertical bar{x is an element of R-3 : M(B)f(x) > alpha}vertical bar <= C integral(R3)vertical bar f vertical bar alpha(1 + log(+)vertical bar f vertical bar/alpha) but does not satisfy an estimate of the form vertical bar{x is an element of R-3 : M(B)f(x) > alpha}vertical bar <= C integral(R3) phi vertical bar f vertical bar/alpha) for any convex increasing function phi : [0, infinity) -> [0, infinity) satisfying the condition lim(x ->infinity) phi(x)/x(log(1 + x)) = 0. Alternatively, if S is an infinite set, then the associated geometric maximal operator M-B satisfies the weak type estimate vertical bar{x is an element of R-3 : M(B)f(x) > alpha}vertical bar <= C integral(R3) vertical bar f vertical bar/alpha (1 + log+ vertical bar f vertical bar/alpha)(2) but does not satisfy an estimate of the form vertical bar{x is an element of R-3 : M(B)f(x) > alpha}vertical bar <= C integral(R3) phi(vertical bar f vertical bar/alpha) for any convex increasing function phi : [0, infinity) -> [0, infinity) satisfying the condition lim(x ->infinity) phi(x)/x(log(1 + x))(2) = 0.
引用
收藏
页码:595 / 603
页数:9
相关论文
共 50 条
  • [41] Sharp Lp estimates for Schrodinger groups on spaces of homogeneous type
    The Anh Bui
    D'Ancona, Piero
    Nicola, Fabio
    REVISTA MATEMATICA IBEROAMERICANA, 2020, 36 (02) : 455 - 484
  • [42] Sharp estimates for dyadic-type maximal operators and stability
    Melas, Antonios
    FIRST CONGRESS OF GREEK MATHEMATICIANS, 2020, : 167 - 180
  • [43] Weak-type Estimates and Potential Estimates for Elliptic Equations with Drift Terms
    Hara, Takanobu
    POTENTIAL ANALYSIS, 2016, 44 (01) : 189 - 214
  • [44] Weak-type Estimates and Potential Estimates for Elliptic Equations with Drift Terms
    Takanobu Hara
    Potential Analysis, 2016, 44 : 189 - 214
  • [45] Sharp estimates for the spreading speeds of the Lotka-Volterra competition-diffusion system: The strong-weak type with pushed front
    Wu, Chang-Hong
    Xiao, Dongyuan
    Zhou, Maolin
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2023, 172 : 236 - 264
  • [46] WEAK AND STRONG TYPE ESTIMATES FOR THE COMMUTATORS OF HAUSDORFF OPERATORS
    Hussain, Amjad
    Ahmed, Mudassar
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2017, 20 (01): : 49 - 56
  • [47] Weak type (p,p) estimates for Riesz transforms
    S. Blunck
    P.C. Kunstmann
    Mathematische Zeitschrift, 2004, 247 : 137 - 148
  • [48] Weighted weak type estimates for commutators of the Marcinkiewicz integrals
    DING Yong LU Shanzhen ZHANG PuDepartment of Mathematics Beijing Normal University Beijing China
    Department of Information and Computing Science Zhejiang Institute of Science and Technology Hangzhou China
    ScienceinChina,SerA., 2004, Ser.A.2004 (01) : 83 - 95
  • [49] Weak type (p,p) estimates for Riesz transforms
    Blunck, S
    Kunstmann, PC
    MATHEMATISCHE ZEITSCHRIFT, 2004, 247 (01) : 137 - 148
  • [50] Weak-type estimates for martingale maximal functions
    Osekowski, Adam
    Wojtas, Mateusz
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2022, 27