Optimized Deep Learning Approach for Efficient Diabetic Retinopathy Classification Combining VGG16-CNN

被引:0
|
作者
El-Hoseny, Heba M. [1 ]
Elsepae, Heba F. [2 ]
Mohamed, Wael A. [2 ]
Selmy, Ayman S. [2 ]
机构
[1] Higher Future Inst Specialized Technol Studies, Dept Comp Sci, Obour 11828, Egypt
[2] Benha Univ, Benha Fac Engn, Dept Elect Engn, Banha 13511, Egypt
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2023年 / 77卷 / 02期
关键词
No diabetic retinopathy (NDR); convolution layers (CNV layers); transfer learning; data cleansing; convolutional neural networks; a visual geometry group (VGG16); NEURAL-NETWORKS;
D O I
10.32604/cmc.2023.042107
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Diabetic retinopathy is a critical eye condition that, if not treated, can lead to vision loss. Traditional methods of diagnosing and treating the disease are time-consuming and expensive. However, machine learning and deep transfer learning (DTL) techniques have shown promise in medical applications, including detecting, classifying, and segmenting diabetic retinopathy. These advanced techniques offer higher accuracy and performance. Computer Aided Diagnosis (CAD) is crucial in speeding up classification and providing accurate disease diagnoses. Overall, these technological advancements hold great potential for improving the management of diabetic retinopathy. The study's objective was to differentiate between different classes of diabetes and verify the model's capability to distinguish between these classes. The robustness of the model was evaluated using other metrics such as accuracy (ACC), precision (PRE), recall (REC), and area under the curve (AUC). In this particular study, the researchers utilized data cleansing techniques, transfer learning (TL), and convolutional neural network (CNN) methods to effectively identify and categorize the various diseases associated with diabetic retinopathy (DR). They employed the VGG-16CNN model, incorporating intelligent parameters that enhanced its robustness. The outcomes surpassed the results obtained by the auto enhancement (AE) filter, which had an ACC of over 98%. The manuscript provides visual aids such as graphs, tables, and techniques and frameworks to enhance understanding. This study highlights the significance of optimized deep TL in improving the metrics of the classification of the four separate classes of DR. The manuscript emphasizes the importance of using the VGG16CNN classification technique in this context.
引用
收藏
页码:1855 / 1872
页数:18
相关论文
共 50 条
  • [21] Deep Learning Techniques for Diabetic Retinopathy Classification: A Survey
    Atwany, Mohammad Z.
    Sahyoun, Abdulwahab H.
    Yaqub, Mohammad
    IEEE ACCESS, 2022, 10 : 28642 - 28655
  • [22] Enhancing diabetic retinopathy classification using deep learning
    Alwakid, Ghadah
    Gouda, Walaa
    Humayun, Mamoona
    Jhanjhi, N. Z.
    DIGITAL HEALTH, 2023, 9
  • [23] Deep Learning-Based Classification of Diabetic Retinopathy
    Huang, Zhenjia
    PROCEEDINGS OF 2023 4TH INTERNATIONAL SYMPOSIUM ON ARTIFICIAL INTELLIGENCE FOR MEDICINE SCIENCE, ISAIMS 2023, 2023, : 371 - 375
  • [24] Deep Machine Learning for OCTA Classification of Diabetic Retinopathy
    Le, David
    Alam, Minhaj Nur
    Lim, Jennifer I.
    Chan, Robison Vernon Paul
    Yao, Xincheng
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2020, 61 (07)
  • [25] Deep learning based binary classification of diabetic retinopathy images using transfer learning approach
    Saproo, Dimple
    Mahajan, Aparna N.
    Narwal, Seema
    JOURNAL OF DIABETES AND METABOLIC DISORDERS, 2024, 23 (02) : 2289 - 2314
  • [26] Diabetic retinopathy classification based on multipath CNN and machine learning classifiers
    S. Gayathri
    Varun P. Gopi
    P. Palanisamy
    Physical and Engineering Sciences in Medicine, 2021, 44 : 639 - 653
  • [27] Diabetic retinopathy classification based on multipath CNN and machine learning classifiers
    Gayathri, S.
    Gopi, Varun P.
    Palanisamy, P.
    PHYSICAL AND ENGINEERING SCIENCES IN MEDICINE, 2021, 44 (03) : 639 - 653
  • [28] Automated Detection of Diabetic Retinopathy Segmented Images using ResNet50 and VGG16 Deep Learning Algorithms
    Betha, Sashi Kanth
    Seventline, J. B.
    2024 SECOND INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTING AND INFORMATICS, ICICI 2024, 2024, : 159 - 165
  • [29] Leveraging VGG16 Deep Learning for Photovoltaic Panel Fault Classification
    Kaur, Gurjot
    Sharma, Neha
    Malhotra, Sonal
    Devliyal, Swati
    Gupta, Rupesh
    2024 2ND WORLD CONFERENCE ON COMMUNICATION & COMPUTING, WCONF 2024, 2024,
  • [30] Deep learning enabled optimized feature selection and classification for grading diabetic retinopathy severity in the fundus image
    Dayana, A. Mary
    Emmanuel, W. R. Sam
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (21): : 18663 - 18683