Enhancing diabetic retinopathy classification using deep learning

被引:2
|
作者
Alwakid, Ghadah [1 ]
Gouda, Walaa [2 ]
Humayun, Mamoona [3 ,5 ]
Jhanjhi, N. Z. [4 ]
机构
[1] Jouf Univ, Coll Comp & Informat Sci, Dept Comp Sci, Sakakah, Al Jouf, Saudi Arabia
[2] Benha Univ, Fac Engn Shoubra, Dept Elect Engn, Cairo, Egypt
[3] Jouf Univ, Coll Comp & Informat Sci, Dept Informat Syst, Sakakah, Al Jouf, Saudi Arabia
[4] Taylors Univ, Sch Comp Sci & Engn SCE, Subang Jaya, Malaysia
[5] Jouf Univ, Coll Comp & Informat Sci, Dept Informat Syst, Sakakah 72341, Al Jouf, Saudi Arabia
来源
DIGITAL HEALTH | 2023年 / 9卷
关键词
Diabetic retinopathy; Convolutional Neural Network; deep learning; APTOS; ADAPTIVE HISTOGRAM EQUALIZATION;
D O I
10.1177/20552076231203676
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Prolonged hyperglycemia can cause diabetic retinopathy (DR), which is a major contributor to blindness. Numerous incidences of DR may be avoided if it were identified and addressed promptly. Throughout recent years, many deep learning (DL)-based algorithms have been proposed to facilitate psychometric testing. Utilizing DL model that encompassed four scenarios, DR and its stages were identified in this study using retinal scans from the "Asia Pacific Tele-Ophthalmology Society (APTOS) 2019 Blindness Detection" dataset. Adopting a DL model then led to the use of augmentation strategies that produced a comprehensive dataset with consistent hyper parameters across all test cases. As a further step in the classification process, we used a Convolutional Neural Network model. Different enhancement methods have been used to raise visual quality. The proposed approach detected the DR with a highest experimental result of 97.83%, a top-2 accuracy of 99.31%, and a top-3 accuracy of 99.88% across all the 5 severity stages of the APTOS 2019 evaluation employing CLAHE and ESRGAN techniques for image enhancement. In addition, we employed APTOS 2019 to develop a set of evaluation metrics (precision, recall, and F1-score) to use in analyzing the efficacy of the suggested model. The proposed approach was also proven to be more efficient at DR location than both state-of-the-art technology and conventional DL.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Diabetic Retinopathy Classification Using Deep Learning
    Sathwik A.S.
    Agarwal R.
    Ajith Jubilson E.
    Basa S.S.
    EAI Endorsed Transactions on Pervasive Health and Technology, 2023, 9
  • [2] Classification of Diabetic Retinopathy by Deep Learning
    Al-Ahmadi, Roaa
    Al-Ghamdi, Hatoon
    Hsairi, Lobna
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2024, 20 (01) : 74 - 88
  • [3] Using Deep Learning Architectures for Detection and Classification of Diabetic Retinopathy
    Mohanty, Cheena
    Mahapatra, Sakuntala
    Acharya, Biswaranjan
    Kokkoras, Fotis
    Gerogiannis, Vassilis C.
    Karamitsos, Ioannis
    Kanavos, Andreas
    SENSORS, 2023, 23 (12)
  • [4] Classification of Diabetic Retinopathy Images by Using Deep Learning Models
    Dutta, Suvajit
    Manideep, Bonthala C. S.
    Basha, Syed Muzamil
    Caytiles, Ronnie D.
    Iyengar, N. Ch. S. N.
    INTERNATIONAL JOURNAL OF GRID AND DISTRIBUTED COMPUTING, 2018, 11 (01): : 89 - 106
  • [5] Classification of diabetic retinopathy severity level using deep learning
    Durairaj, Santhi
    Subramanian, Parvathi
    Swamy, Carmel Sobia Micheal
    INTERNATIONAL JOURNAL OF DIABETES IN DEVELOPING COUNTRIES, 2024, 44 (03) : 592 - 598
  • [6] Diabetic Retinopathy Classification Using Hybrid Deep Learning Approach
    Menaouer B.
    Dermane Z.
    El Houda Kebir N.
    Matta N.
    SN Computer Science, 3 (5)
  • [7] Classification of proliferative diabetic retinopathy using deep learning.
    Ortiz-Feregrino, Rafael
    Tovar-Arriag, Saul
    Ramos-Arreguin, Juan
    Gorrostieta, Efren
    2019 IEEE COLOMBIAN CONFERENCE ON APPLICATIONS IN COMPUTATIONAL INTELLIGENCE (COLCACI), 2019,
  • [8] A Deep Learning Approach to Diabetic Retinopathy Classification
    Oishi, Anika Mehjabin
    Tawfiq-Uz-Zaman, Md
    Emon, Mohammad Billal Hossain
    Momen, Sifat
    CYBERNETICS PERSPECTIVES IN SYSTEMS, VOL 3, 2022, 503 : 417 - 425
  • [9] Advancing diabetic retinopathy classification using ensemble deep learning approaches
    Biswas, Ankur
    Banik, Rita
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 106
  • [10] Deep learning model using classification for diabetic retinopathy detection: an overview
    Muthusamy, Dharmalingam
    Palani, Parimala
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (07)