Deep learning based binary classification of diabetic retinopathy images using transfer learning approach

被引:0
|
作者
Saproo, Dimple [1 ]
Mahajan, Aparna N. [2 ]
Narwal, Seema [3 ]
机构
[1] Maharaja Agrasen Univ Baddi, Baddi 173205, Himachal Prades, India
[2] Maharaja Agrasen Univ Baddi, Maharaja Agrasen Inst Technol MAIT, Baddi 173205, Himachal Prades, India
[3] Dronacharya Coll Engn, Gurugram 122001, Haryana, India
关键词
Series; DAG; Lightweight; Pre-trained networks; Classification accuracy;
D O I
10.1007/s40200-024-01497-1
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective Diabetic retinopathy (DR) is a common problem of diabetes, and it is the cause of blindness worldwide. Detection of diabetic radiology disease in the early detection stage is crucial for preventing vision loss. In this work, a deep learning-based binary classification of DR images has been proposed to classify DR images into healthy and unhealthy. Transfer learning-based 20 pre-trained networks have been fine-tuned using a robust dataset of diabetic radiology images. The combined dataset has been collected from three robust databases of diabetic patients annotated by experienced ophthalmologists indicating healthy or non-healthy diabetic retina images. Method This work has improved robust models by pre-processing the DR images by applying a denoising algorithm, normalization, and data augmentation. In this work, three rubout datasets of diabetic retinopathy images have been selected, named DRD- EyePACS, IDRiD, and APTOS-2019, for the extensive experiments, and a combined diabetic retinopathy image dataset has been generated for the exhaustive experiments. The datasets have been divided into training, testing, and validation sets, and the models use classification accuracy, sensitivity, specificity, precision, F1-score, and ROC-AUC to assess the model's efficiency for evaluating network performance. The present work has selected 20 different pre-trained networks based on three categories: Series, DAG, and lightweight. Results This study uses pre-processed data augmentation and normalization of data to solve overfitting problems. From the exhaustive experiments, the three best pre-trained have been selected based on the best classification accuracy from each category. It is concluded that the trained model ResNet101 based on the DAG category effectively identifies diabetic retinopathy disease accurately from radiological images from all cases. It is noted that 97.33% accuracy has been achieved using ResNet101 in the category of DAG network. Conclusion Based on the experiment results, the proposed model ResNet101 helps healthcare professionals detect retina diseases early and provides practical solutions to diabetes patients. It also gives patients and experts a second opinion for early detection of diabetic retinopathy.
引用
收藏
页码:2289 / 2314
页数:26
相关论文
共 50 条
  • [1] Classification of Diabetic Retinopathy Images by Using Deep Learning Models
    Dutta, Suvajit
    Manideep, Bonthala C. S.
    Basha, Syed Muzamil
    Caytiles, Ronnie D.
    Iyengar, N. Ch. S. N.
    INTERNATIONAL JOURNAL OF GRID AND DISTRIBUTED COMPUTING, 2018, 11 (01): : 89 - 106
  • [2] A Deep Learning Approach to Diabetic Retinopathy Classification
    Oishi, Anika Mehjabin
    Tawfiq-Uz-Zaman, Md
    Emon, Mohammad Billal Hossain
    Momen, Sifat
    CYBERNETICS PERSPECTIVES IN SYSTEMS, VOL 3, 2022, 503 : 417 - 425
  • [3] Diabetic Retinopathy Classification Using Hybrid Deep Learning Approach
    Menaouer B.
    Dermane Z.
    El Houda Kebir N.
    Matta N.
    SN Computer Science, 3 (5)
  • [4] A Transfer Learning Approach for Diabetic Retinopathy Classification Using Deep Convolutional Neural Networks
    Krishnan, Arvind Sai
    Clive, Derik R.
    Bhat, Vilas
    Ramteke, Pravin Bhaskar
    Koolagudi, Shashidhar G.
    IEEE INDICON: 15TH IEEE INDIA COUNCIL INTERNATIONAL CONFERENCE, 2018,
  • [5] Diabetic Retinopathy Classification Using Deep Learning
    Sathwik A.S.
    Agarwal R.
    Ajith Jubilson E.
    Basa S.S.
    EAI Endorsed Transactions on Pervasive Health and Technology, 2023, 9
  • [6] Deep hyperparameter transfer learning for diabetic retinopathy classification
    Patil, Mahesh S.
    Chickerur, Satyadhyan
    Kumar, Yeshwanth V. S.
    Bakale, Vijayalakshmi A.
    Giraddi, Shantala
    Roodagi, Vivekanand C.
    Kulkarni, Yashaswini N.
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2021, 29 : 2824 - 2839
  • [7] Classification of Diabetic Retinopathy Severity Using Deep Learning Techniques on Retinal Images
    Kumari, A. Aruna
    Bhagat, Avinash
    Henge, Santosh Kumar
    CYBERNETICS AND SYSTEMS, 2024,
  • [8] Suitability Classification of Retinal Fundus Images for Diabetic Retinopathy Using Deep Learning
    Pinedo-Diaz, German
    Ortega-Cisneros, Susana
    Moya-Sanchez, Eduardo Ulises
    Rivera, Jorge
    Mejia-Alvarez, Pedro
    Rodriguez-Navarrete, Francisco J.
    Sanchez, Abraham
    ELECTRONICS, 2022, 11 (16)
  • [9] Deep learning for diabetic retinopathy detection and classification based on fundus images: A review
    Tsiknakis, Nikos
    Theodoropoulos, Dimitris
    Manikis, Georgios
    Ktistakis, Emmanouil
    Boutsora, Ourania
    Berto, Alexa
    Scarpa, Fabio
    Scarpa, Alberto
    Fotiadis, Dimitrios, I
    Marias, Kostas
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 135
  • [10] Deep Learning Approach for Stages of Severity Classification in Diabetic Retinopathy Using Color Fundus Retinal Images
    Goel, Silky
    Gupta, Siddharth
    Panwar, Avnish
    Kumar, Sunil
    Verma, Madhushi
    Bourouis, Sami
    Ullah, Mohammad Aman
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021