Bernoulli-Euler Beam Unsteady Bending Model with Consideration of Heat and Mass Transfer

被引:4
|
作者
Zemskov, Andrei, V [1 ]
Le Van Hao [2 ]
Tarlakoyskii, Dmitry, V [3 ]
机构
[1] Natl Res Univ, Moscow Aviat Inst, Dept Appl Software & Math Methods, Moscow 125993, Russia
[2] Natl Res Univ, Moscow Aviat Inst, Dept Mat Resistance Dynam & Machine Strength, Moscow 125993, Russia
[3] Lomonosov Moscow State Univ, Res Inst Mech, Dynam Testing Lab, Moscow 125993, Russia
来源
JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS | 2023年 / 9卷 / 01期
基金
俄罗斯科学基金会;
关键词
Thermoelastic diffusion; Laplace transform; Green's function; Bernoulli-Euler beam; THERMOELASTIC DIFFUSION PROBLEM; CONTACT PROBLEM; PLATE; ATTRACTOR; WAVES;
D O I
10.22055/jacm.2022.40752.3649
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The article describes the problem of unsteady vibrations of a Bernoulli-Euler beam taking into account the relaxation of temperature and diffusion processes. The initial mathematical model includes a system of equations for unsteady bending vibrations of the beam with consideration of heat and mass transfer. This model is obtained from the general model of thermomechanodiffusion for continuum using the D'Alembert's variational principle. The solution of the problem is obtained in the integral form. The kernels of the integral representations are Green's functions. For finding of Green's functions the expansion into trigonometric Fourier series and Laplace transform in time are used. The calculation example is investigated for a freely supported three-component beam made of zinc, copper and aluminum alloy under the action of unsteady bending moments, including the interaction of mechanical, temperature and diffusion fields.
引用
收藏
页码:168 / 180
页数:13
相关论文
共 50 条
  • [41] Dynamics of an axially moving Bernoulli-Euler beam: Spectral element modeling and analysis
    Hyungmi Oh
    Usik Lee
    Dong-Hyun Park
    KSME International Journal, 2004, 18 : 395 - 406
  • [42] Bending and vibration analysis of delaminated Bernoulli-Euler microbeams using the modified couple stress
    Jafari-Talookolaei, R. -A.
    Ebrahimzade, N.
    Rashidi-Juybari, S.
    Teimoori, K.
    SCIENTIA IRANICA, 2018, 25 (02) : 675 - 688
  • [43] Equilibrium Forms of an Initially Curved Bernoulli-Euler Beam in Electric and Thermal Fields
    Morozov, N. F.
    Indeitsev, D. A.
    Mozhgova, N. V.
    Lukin, A. V.
    Popov, I. A.
    DOKLADY PHYSICS, 2023, 68 (02) : 56 - 61
  • [44] Linear static isogeometric analysis of an arbitrarily curved spatial Bernoulli-Euler beam
    Radenkovic, G.
    Borkovic, A.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 341 : 360 - 396
  • [45] A new Bernoulli-Euler beam model based on a simplified strain gradient elasticity theory and its applications
    Liang, Xu
    Hu, Shuling
    Shen, Shengping
    COMPOSITE STRUCTURES, 2014, 111 : 317 - 323
  • [46] A Size-dependent Bernoulli-Euler Beam Formulation based on a New Model of Couple Stress Theory
    Alashti, R. Akbari
    Abolghasemi, A. H.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2014, 27 (06): : 951 - 960
  • [47] On the analytical approach to the linear analysis of an arbitrarily curved spatial Bernoulli-Euler beam
    Radenkovic, G.
    Borkovic, A.
    APPLIED MATHEMATICAL MODELLING, 2020, 77 (1603-1624) : 1603 - 1624
  • [48] Optimal location of the actuator for the pointwise stabilization at high frequencies of a Bernoulli-Euler beam
    Ammari, K
    Saïdi, A
    CONTROL AND CYBERNETICS, 2002, 31 (01): : 57 - 66
  • [49] FREE-VIBRATION OF BERNOULLI-EULER BEAM USING THE SPECTRAL ELEMENT METHOD
    Hamioud, Saida
    Khalfallah, Salah
    TEHNICKI GLASNIK-TECHNICAL JOURNAL, 2016, 10 (3-4): : 106 - 112
  • [50] A transfer matrix method capable of determining the exact solutions of a twisted Bernoulli-Euler beam with multiple edge cracks
    Lee, Jung Woo
    Lee, Jung Youn
    APPLIED MATHEMATICAL MODELLING, 2017, 41 : 474 - 493