Bernoulli-Euler Beam Unsteady Bending Model with Consideration of Heat and Mass Transfer

被引:4
|
作者
Zemskov, Andrei, V [1 ]
Le Van Hao [2 ]
Tarlakoyskii, Dmitry, V [3 ]
机构
[1] Natl Res Univ, Moscow Aviat Inst, Dept Appl Software & Math Methods, Moscow 125993, Russia
[2] Natl Res Univ, Moscow Aviat Inst, Dept Mat Resistance Dynam & Machine Strength, Moscow 125993, Russia
[3] Lomonosov Moscow State Univ, Res Inst Mech, Dynam Testing Lab, Moscow 125993, Russia
来源
JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS | 2023年 / 9卷 / 01期
基金
俄罗斯科学基金会;
关键词
Thermoelastic diffusion; Laplace transform; Green's function; Bernoulli-Euler beam; THERMOELASTIC DIFFUSION PROBLEM; CONTACT PROBLEM; PLATE; ATTRACTOR; WAVES;
D O I
10.22055/jacm.2022.40752.3649
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The article describes the problem of unsteady vibrations of a Bernoulli-Euler beam taking into account the relaxation of temperature and diffusion processes. The initial mathematical model includes a system of equations for unsteady bending vibrations of the beam with consideration of heat and mass transfer. This model is obtained from the general model of thermomechanodiffusion for continuum using the D'Alembert's variational principle. The solution of the problem is obtained in the integral form. The kernels of the integral representations are Green's functions. For finding of Green's functions the expansion into trigonometric Fourier series and Laplace transform in time are used. The calculation example is investigated for a freely supported three-component beam made of zinc, copper and aluminum alloy under the action of unsteady bending moments, including the interaction of mechanical, temperature and diffusion fields.
引用
收藏
页码:168 / 180
页数:13
相关论文
共 50 条
  • [31] Modelling a rotating shaft as an elastically restrained Bernoulli-Euler beam
    T. A. N. Silva
    N. M. M. Maia
    Experimental Techniques, 2013, 37 : 6 - 13
  • [32] On Bernoulli-Euler modeling of an immersed beam for axisymmetric container parameters measurement
    Sanchez-Diaz, Juan C.
    Ramirez-Cortes, Juan M.
    Gomez-Gil, Pilar
    Rangel-Magdaleno, Jose
    Peregrina-Barreto, Hayde
    Cruz-Vega, Israel
    2018 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC): DISCOVERING NEW HORIZONS IN INSTRUMENTATION AND MEASUREMENT, 2018, : 1084 - 1089
  • [33] Influence of Asymmetric Distribution of Defects on Dynamic Stability of Bernoulli-Euler Beam
    Sochacki, W.
    Garus, J.
    Garus, S.
    ACTA PHYSICA POLONICA A, 2021, 139 (05) : 557 - 561
  • [34] Stability of the Bernoulli-Euler Beam under the Action of a Moving Thermal Source
    Morozov, N. F.
    Indeitsev, D. A.
    Lukin, A. V.
    Popov, I. A.
    Privalova, O. V.
    Shtukin, L. V.
    DOKLADY PHYSICS, 2020, 65 (02) : 67 - 71
  • [35] EFFECTS OF COORDINATE SYSTEM ON THE ACCURACY OF COROTATIONAL FORMULATION FOR BERNOULLI-EULER BEAM
    IURA, M
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1994, 31 (20) : 2793 - 2806
  • [36] An analytical study on peeling of an adhesively bonded joint based on a viscoelastic Bernoulli-Euler beam model
    Gao, X. -L.
    Su, Y. -Y.
    ACTA MECHANICA, 2015, 226 (09) : 3059 - 3067
  • [37] Unsteady vibration model of the euler-bernoulli beam taking into account diffusion
    Zemskov, A. V.
    Tarlakovskii, D. V.
    12TH INTERNATIONAL CONFERENCE - MESH METHODS FOR BOUNDARY: VALUE PROBLEMS AND APPLICATIONS, 2019, 1158
  • [38] A non-classical Bernoulli-Euler beam model based on a simplified micromorphic elasticity theory
    Zhang, G. Y.
    Gao, X. -l.
    Zheng, C. Y.
    Mi, C. W.
    MECHANICS OF MATERIALS, 2021, 161
  • [39] A higher-order Eringen model for Bernoulli-Euler nanobeams
    Barretta, Raffaele
    Canadija, Marko
    de Sciarra, Francesco Marotti
    ARCHIVE OF APPLIED MECHANICS, 2016, 86 (03) : 483 - 495
  • [40] Dynamics of an axially moving Bernoulli-Euler beam: Spectral element modeling and analysis
    Oh, H
    Lee, U
    Park, DH
    KSME INTERNATIONAL JOURNAL, 2004, 18 (03): : 395 - 406