Bernoulli-Euler Beam Unsteady Bending Model with Consideration of Heat and Mass Transfer

被引:4
|
作者
Zemskov, Andrei, V [1 ]
Le Van Hao [2 ]
Tarlakoyskii, Dmitry, V [3 ]
机构
[1] Natl Res Univ, Moscow Aviat Inst, Dept Appl Software & Math Methods, Moscow 125993, Russia
[2] Natl Res Univ, Moscow Aviat Inst, Dept Mat Resistance Dynam & Machine Strength, Moscow 125993, Russia
[3] Lomonosov Moscow State Univ, Res Inst Mech, Dynam Testing Lab, Moscow 125993, Russia
来源
JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS | 2023年 / 9卷 / 01期
基金
俄罗斯科学基金会;
关键词
Thermoelastic diffusion; Laplace transform; Green's function; Bernoulli-Euler beam; THERMOELASTIC DIFFUSION PROBLEM; CONTACT PROBLEM; PLATE; ATTRACTOR; WAVES;
D O I
10.22055/jacm.2022.40752.3649
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The article describes the problem of unsteady vibrations of a Bernoulli-Euler beam taking into account the relaxation of temperature and diffusion processes. The initial mathematical model includes a system of equations for unsteady bending vibrations of the beam with consideration of heat and mass transfer. This model is obtained from the general model of thermomechanodiffusion for continuum using the D'Alembert's variational principle. The solution of the problem is obtained in the integral form. The kernels of the integral representations are Green's functions. For finding of Green's functions the expansion into trigonometric Fourier series and Laplace transform in time are used. The calculation example is investigated for a freely supported three-component beam made of zinc, copper and aluminum alloy under the action of unsteady bending moments, including the interaction of mechanical, temperature and diffusion fields.
引用
收藏
页码:168 / 180
页数:13
相关论文
共 50 条
  • [21] Flapwise bending vibration analysis of a rotating tapered cantilever Bernoulli-Euler beam by differential transform method
    Özdemir, Ö
    Kaya, MO
    JOURNAL OF SOUND AND VIBRATION, 2006, 289 (1-2) : 413 - 420
  • [22] A new Bernoulli-Euler beam model based on a reformulated strain gradient elasticity theory
    Zhang, G. Y.
    Gao, X-L
    MATHEMATICS AND MECHANICS OF SOLIDS, 2020, 25 (03) : 630 - 643
  • [23] EFFECT OF CRACK PARAMETERS ON FREE VIBRATIONS OF THE BERNOULLI-EULER BEAM
    Zamorska, Izabela
    Cekus, Dawid
    Miara, Mateusz
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTATIONAL MECHANICS, 2015, 14 (04) : 167 - 174
  • [24] On the correction of the Bernoulli-Euler beam theory for smart piezoelectric beams
    Krommer, M
    SMART MATERIALS & STRUCTURES, 2001, 10 (04): : 668 - 680
  • [25] INFLUENCE OF MATERIAL DEFECTS ON THE DYNAMIC STABILITY OF THE BERNOULLI-EULER BEAM
    Sochacki, W.
    Garus, S.
    Garus, J.
    ARCHIVES OF METALLURGY AND MATERIALS, 2021, 66 (02) : 519 - 522
  • [26] Modelling a Rotating Shaft as an Elastically Restrained Bernoulli-Euler Beam
    Silva, T. A. N.
    Maia, N. M. M.
    PROCEEDINGS OF ISMA2010 - INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING INCLUDING USD2010, 2010, : 1635 - 1645
  • [27] Modelling a Rotating Shaft as an Elastically Restrained Bernoulli-Euler Beam
    Silva, T. A. N.
    Maia, N. M. M.
    EXPERIMENTAL TECHNIQUES, 2013, 37 (05) : 6 - 13
  • [28] Stability of the Bernoulli-Euler Beam in Coupled Electric and Thermal Fields
    Morozov, N. F.
    Indeitsev, D. A.
    Lukin, A. V.
    Popov, I. A.
    Privalova, O. V.
    Shtukin, L. V.
    DOKLADY PHYSICS, 2018, 63 (08) : 342 - 347
  • [29] ANALOGY BETWEEN REFINED BEAM THEORIES AND THE BERNOULLI-EULER THEORY
    IRSCHIK, H
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1991, 28 (09) : 1105 - 1112
  • [30] PARAMETRIC EXCITATION OF A NON-HOMOGENEOUS BERNOULLI-EULER BEAM
    FRANCIS, PH
    JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 1968, 10 (03): : 205 - &