A deep learning method to identify and localize large-vessel occlusions from cerebral digital subtraction angiography

被引:0
|
作者
Warman, Roshan [1 ]
Warman, PranavI. [2 ]
Warman, Anmol [3 ]
Bueso, Tulio [4 ]
Ota, Riichi [4 ]
Windisch, Thomas [4 ,5 ]
Neves, Gabriel [6 ]
机构
[1] Univ Penn, Perelman Sch Med, Philadelphia, PA USA
[2] Duke Univ, Sch Med, Durham, NC USA
[3] Johns Hopkins Univ, Sch Med, Baltimore, MD USA
[4] Texas Tech Univ Hlth Sci Ctr, Dept Neurol, Lubbock, TX USA
[5] Covenant Hlth, Lubbock, TX USA
[6] Washington Univ, Dept Neurol, Sect Neurocrit Care, Sch Med St Louis, 660 S Euclid Ave,CB 8111, St. Louis, MO 63110 USA
关键词
angiogram; artificial intelligence; stroke; thrombectomy; vascular;
D O I
10.1111/jon.13193
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background and purposeAn essential step during endovascular thrombectomy is identifying the occluded arterial vessel on a cerebral digital subtraction angiogram (DSA). We developed an algorithm that can detect and localize the position of occlusions in cerebral DSA.MethodsWe retrospectively collected cerebral DSAs from a single institution between 2018 and 2020 from 188 patients, 86 of whom suffered occlusions of the M1 and proximal M2 segments. We trained an ensemble of deep-learning models on fewer than 60 large-vessel occlusion (LVO)-positive patients. We evaluated the model on an independent test set and evaluated the truth of its predicted localizations using Intersection over Union and expert review.ResultsOn an independent test set of 166 cerebral DSA frames with an LVO prevalence of 0.19, the model achieved a specificity of 0.95 (95% confidence interval [CI]: 0.90, 0.99), a precision of 0.7450 (95% CI: 0.64, 0.88), and a sensitivity of 0.76 (95% CI: 0.66, 0.91). The model correctly localized the LVO in at least one frame in 13 of the 14 LVO-positive patients in the test set. The model achieved a precision of 0.67 (95% CI: 0.52, 0.79), recall of 0.69 (95% CI: 0.46, 0.81), and a mean average precision of 0.75 (95% CI: 0.56, 0.91).ConclusionThis work demonstrates that a deep learning strategy using a limited dataset can generate effective representations used to identify LVOs. Generating an expanded and more complete dataset of LVOs with obstructed LVOs is likely the best way to improve the model's ability to localize LVOs.
引用
收藏
页码:366 / 375
页数:10
相关论文
共 50 条
  • [1] Analysis of collateral circulation in proximal cerebral vessel occlusions based on digital subtraction angiography (DSA)
    Gruber, P.
    Menze, B.
    Pfeiffer, M.
    Baltsavias, G.
    Wegener, S.
    Steffen, R.
    Luft, A.
    INTERNATIONAL JOURNAL OF STROKE, 2015, 10 : 315 - 315
  • [2] Evaluating a 3D deep learning pipeline for cerebral vessel and intracranial aneurysm segmentation from computed tomography angiography-digital subtraction angiography image pairs
    Patel, Tatsat R.
    Patel, Aakash
    Veeturi, Sricharan S.
    Shah, Munjal
    Waqas, Muhammad
    Monteiro, Andre
    Baig, Ammad A.
    Pinter, Nandor
    Levy, Elad I.
    Siddiqui, Adnan H.
    Tutino, Vincent M.
    NEUROSURGICAL FOCUS, 2023, 54 (06)
  • [3] Training of a deep learning based digital subtraction angiography method using synthetic data
    Duan, Lizhen
    Eulig, Elias
    Knaup, Michael
    Adamus, Ralf
    Lell, Michael
    Kachelriess, Marc
    MEDICAL PHYSICS, 2024, 51 (07) : 4793 - 4810
  • [4] Is it possible to identify acute ischemic stroke patients with large-vessel occlusions using clinical screening scales?
    Kristoffersen, E. S.
    Reichenbach, A.
    Faiz, K.
    Altmann, M.
    Sundseth, A.
    Thommessen, B.
    Ronning, O. M.
    EUROPEAN JOURNAL OF NEUROLOGY, 2018, 25 : 99 - 99
  • [5] Detecting Large Vessel Occlusions using Graph Deep Learning
    Kassam, Jad
    Thamm, Florian
    Rist, Leonhard
    Taubmann, Oliver
    Maier, Andreas
    GEOMETRIC DEEP LEARNING IN MEDICAL IMAGE ANALYSIS, VOL 194, 2022, 194 : 149 - 159
  • [6] Automatically Predicting Modified Treatment in Cerebral Ischemia Scores From Patient Digital Subtraction Angiography Using Deep Learning
    Lall, Ayush
    Scalzo, Fabien
    Ullman, Henrik
    Liebeskind, David S.
    Chien, Aichi
    STROKE, 2021, 52
  • [7] ERNet: Edge Regularization Network for Cerebral Vessel Segmentation in Digital Subtraction Angiography Images
    Xu, Weijin
    Yang, Huihua
    Shi, Yinghuan
    Tan, Tao
    Liu, Wentao
    Pan, Xipeng
    Deng, Yiming
    Gao, Feng
    Su, Ruisheng
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (03) : 1472 - 1483
  • [8] Automated detection of arterial landmarks and vascular occlusions in patients with acute stroke receiving digital subtraction angiography using deep learning
    Khankari, Jui
    Yu, Yannan
    Ouyang, Jiahong
    Hussein, Ramy
    Do, Huy M.
    Heit, Jeremy J.
    Zaharchuk, Greg
    JOURNAL OF NEUROINTERVENTIONAL SURGERY, 2023, 15 (06) : 521 - 525
  • [9] Deep learning-based digital subtraction angiography image generation
    Gao, Yufeng
    Song, Yu
    Yin, Xiangrui
    Wu, Weiwen
    Zhang, Lu
    Chen, Yang
    Shi, Wanyin
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2019, 14 (10) : 1775 - 1784
  • [10] Deep learning-based digital subtraction angiography image generation
    Yufeng Gao
    Yu Song
    Xiangrui Yin
    Weiwen Wu
    Lu Zhang
    Yang Chen
    Wanyin Shi
    International Journal of Computer Assisted Radiology and Surgery, 2019, 14 : 1775 - 1784