Automated detection of arterial landmarks and vascular occlusions in patients with acute stroke receiving digital subtraction angiography using deep learning

被引:8
|
作者
Khankari, Jui [1 ]
Yu, Yannan [1 ]
Ouyang, Jiahong [2 ]
Hussein, Ramy [1 ]
Do, Huy M. [3 ]
Heit, Jeremy J. [4 ]
Zaharchuk, Greg [1 ]
机构
[1] Stanford Univ, Dept Radiol, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Radiol & Neurosurg, Stanford, CA 94305 USA
[4] Stanford Univ, Radiol Neuroadiol & Neurointervent Div, Stanford, CA 94305 USA
基金
美国国家卫生研究院;
关键词
Stroke; Angiography;
D O I
10.1136/neurintsurg-2021-018638
中图分类号
R445 [影像诊断学];
学科分类号
100207 ;
摘要
Background Digital subtraction angiography (DSA) is the gold-standard method of assessing arterial blood flow and blockages prior to endovascular thrombectomy. Objective To detect anatomical features and arterial occlusions with DSA using artificial intelligence techniques. Methods We included 82 patients with acute ischemic stroke who underwent DSA imaging and whose carotid terminus was visible in at least one run. Two neurointerventionalists labeled the carotid location (when visible) and vascular occlusions on 382 total individual DSA runs. For detecting the carotid terminus, positive and negative image patches (either containing or not containing the internal carotid artery terminus) were extracted in a 1:1 ratio. Two convolutional neural network architectures (ResNet-50 pretrained on ImageNet and ResNet-50 trained from scratch) were evaluated. Area under the curve (AUC) of the receiver operating characteristic and pixel distance from the ground truth were calculated. The same training and analysis methods were used for detecting arterial occlusions. Results The ResNet-50 trained from scratch most accurately detected the carotid terminus (AUC 0.998 (95% CI 0.997 to 0.999), p<0.00001) and arterial occlusions (AUC 0.973 (95% CI 0.971 to 0.975), p<0.0001). Average pixel distances from ground truth for carotid terminus and occlusion localization were 63 +/- 45 and 98 +/- 84, corresponding to approximately 1.26 +/- 0.90 cm and 1.96 +/- 1.68 cm for a standard angiographic field-of-view. Conclusion These results may serve as an unbiased standard for clinical stroke trials, as optimal standardization would be useful for core laboratories in endovascular thrombectomy studies, and also expedite decision-making during DSA-based procedures.
引用
收藏
页码:521 / 525
页数:5
相关论文
共 50 条
  • [1] Image-level detection of arterial occlusions in 4D-CTA of acute stroke patients using deep learning
    Meijs, Midas
    Meijer, Frederick J. A.
    Prokop, Mathias
    van Ginneken, Bram
    Manniesing, Rashindra
    MEDICAL IMAGE ANALYSIS, 2020, 66
  • [2] Deep-learning based detection of vessel occlusions on CT-angiography in patients with suspected acute ischemic stroke
    Brugnara, Gianluca
    Baumgartner, Michael
    Scholze, Edwin David
    Deike-Hofmann, Katerina
    Kades, Klaus
    Scherer, Jonas
    Denner, Stefan
    Meredig, Hagen
    Rastogi, Aditya
    Mahmutoglu, Mustafa Ahmed
    Ulfert, Christian
    Neuberger, Ulf
    Schoenenberger, Silvia
    Schlamp, Kai
    Bendella, Zeynep
    Pinetz, Thomas
    Schmeel, Carsten
    Wick, Wolfgang
    Ringleb, Peter A.
    Floca, Ralf
    Moehlenbruch, Markus
    Radbruch, Alexander
    Bendszus, Martin
    Maier-Hein, Klaus
    Vollmuth, Philipp
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [3] Evaluation of neurosonology versus digital subtraction angiography in acute stroke patients
    Assarzadegan, Farhad
    Mohammadi, Foroogh
    Lima, Behnam Safarpour
    Mansouri, Behnam
    Aghamiri, Seyed Hossein
    Vaighan, Navideh Sahebi
    JOURNAL OF CLINICAL NEUROSCIENCE, 2021, 91 : 378 - 382
  • [4] Abstract: Deep Learning-based Detection of Vessel Occlusions on CT-Angiography in Patients with Suspected Acute Ischemic Stroke
    Brugnara, Gianluca
    Baumgartner, Michael
    Scholze, Edwin D.
    Deike-Hofmann, Katerina
    Kades, Klaus
    Scherer, Jonas
    Denner, Stefan
    Meredig, Hagen
    Rastogi, Aditya
    Mahmutoglu, Mustafa A.
    Ulfert, Christian
    Neuberger, Ulf
    Schoenenberger, Silvia
    Schlamp, Kai
    Bendella, Zeynep
    Pinetz, Thomas
    Schmeel, Carsten
    Wick, Wolfgang
    Ringleb, Peter A.
    Floca, Ralf
    Moehlenbruch, Markus
    Radbruch, Alexander
    Bendszus, Martin
    Maier-Hein, Klaus
    Vollmuth, Philipp
    BILDVERARBEITUNG FUR DIE MEDIZIN 2024, 2024, : 9 - 9
  • [5] InterNet: Detection of Active Abdominal Arterial Bleeding Using Emergency Digital Subtraction Angiography Imaging With Two-Stage Deep Learning
    Min, Xiangde
    Feng, Zhaoyan
    Gao, Junfeng
    Chen, Shu
    Zhang, Peipei
    Fu, Tianyu
    Shen, Hong
    Wang, Nan
    FRONTIERS IN MEDICINE, 2022, 9
  • [6] A deep learning method to identify and localize large-vessel occlusions from cerebral digital subtraction angiography
    Warman, Roshan
    Warman, PranavI.
    Warman, Anmol
    Bueso, Tulio
    Ota, Riichi
    Windisch, Thomas
    Neves, Gabriel
    JOURNAL OF NEUROIMAGING, 2024, 34 (03) : 366 - 375
  • [7] MR Angiography in Assessment of Collaterals in Patients with Acute Ischemic Stroke: A Comparative Analysis with Digital Subtraction Angiography
    Tsui, Brian
    Nour, May
    Chen, Iris
    Qiao, Joe X.
    Salehi, Banafsheh
    Yoo, Bryan
    Colby, Geoffrey P.
    Salamon, Noriko
    Villablanca, Pablo
    Jahan, Reza
    Duckwiler, Gary
    Saver, Jeffrey L.
    Liebeskind, David S.
    Nael, Kambiz
    BRAIN SCIENCES, 2022, 12 (09)
  • [8] Deep learning based detection of intracranial aneurysms on digital subtraction angiography: A feasibility study
    Hainc, Nicolin
    Mannil, Manoj
    Anagnostakou, Vaia
    Alkadhi, Hatem
    Bluthgen, Christian
    Wacht, Lorenz
    Bink, Andrea
    Husain, Shakir
    Kulcsar, Zsolt
    Winklhofer, Sebastian
    NEURORADIOLOGY JOURNAL, 2020, 33 (04): : 311 - 317
  • [9] Accuracy of transcranial duplex sonography, compared with CT angiography, for detection of intracranial arterial occlusions in acute stroke
    Martinez-Sanchez, P.
    Garcia-Pastor, A.
    Arenillas-Lara, J. F.
    Ayo-Martin, O.
    Ruiz-Ares, G.
    Diaz-Otero, F.
    Calleja-Sanz, A. I.
    Garcia-Garcia, J.
    Frutos-Martinez, R.
    Sobrino-Garcia, P.
    Villar-Garcia, M.
    Fuentes, B.
    Vazquez-Alen, P.
    Marcos-Naranjo, E.
    Sanz-Cuesta, B. E.
    Chavarria-Cano, B.
    Collado-Jimenez, R. M.
    Diez-Tejedor, E.
    INTERNATIONAL JOURNAL OF STROKE, 2015, 10 : 344 - 344
  • [10] Automated Detection of Anatomical Landmarks During Colonoscopy Using a Deep Learning Model
    Taghiakbari, Mahsa
    Hamidi Ghalehjegh, Sina
    Jehanno, Emmanuel
    Berthier, Tess
    di Jorio, Lisa
    Ghadakzadeh, Saber
    Barkun, Alan
    Takla, Mark
    Bouin, Mickael
    Deslandres, Eric
    Bouchard, Simon
    Sidani, Sacha
    Bengio, Yoshua
    von Renteln, Daniel
    JOURNAL OF THE CANADIAN ASSOCIATION OF GASTROENTEROLOGY, 2023, 6 (04) : 145 - 151