Automated detection of arterial landmarks and vascular occlusions in patients with acute stroke receiving digital subtraction angiography using deep learning

被引:8
|
作者
Khankari, Jui [1 ]
Yu, Yannan [1 ]
Ouyang, Jiahong [2 ]
Hussein, Ramy [1 ]
Do, Huy M. [3 ]
Heit, Jeremy J. [4 ]
Zaharchuk, Greg [1 ]
机构
[1] Stanford Univ, Dept Radiol, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Radiol & Neurosurg, Stanford, CA 94305 USA
[4] Stanford Univ, Radiol Neuroadiol & Neurointervent Div, Stanford, CA 94305 USA
基金
美国国家卫生研究院;
关键词
Stroke; Angiography;
D O I
10.1136/neurintsurg-2021-018638
中图分类号
R445 [影像诊断学];
学科分类号
100207 ;
摘要
Background Digital subtraction angiography (DSA) is the gold-standard method of assessing arterial blood flow and blockages prior to endovascular thrombectomy. Objective To detect anatomical features and arterial occlusions with DSA using artificial intelligence techniques. Methods We included 82 patients with acute ischemic stroke who underwent DSA imaging and whose carotid terminus was visible in at least one run. Two neurointerventionalists labeled the carotid location (when visible) and vascular occlusions on 382 total individual DSA runs. For detecting the carotid terminus, positive and negative image patches (either containing or not containing the internal carotid artery terminus) were extracted in a 1:1 ratio. Two convolutional neural network architectures (ResNet-50 pretrained on ImageNet and ResNet-50 trained from scratch) were evaluated. Area under the curve (AUC) of the receiver operating characteristic and pixel distance from the ground truth were calculated. The same training and analysis methods were used for detecting arterial occlusions. Results The ResNet-50 trained from scratch most accurately detected the carotid terminus (AUC 0.998 (95% CI 0.997 to 0.999), p<0.00001) and arterial occlusions (AUC 0.973 (95% CI 0.971 to 0.975), p<0.0001). Average pixel distances from ground truth for carotid terminus and occlusion localization were 63 +/- 45 and 98 +/- 84, corresponding to approximately 1.26 +/- 0.90 cm and 1.96 +/- 1.68 cm for a standard angiographic field-of-view. Conclusion These results may serve as an unbiased standard for clinical stroke trials, as optimal standardization would be useful for core laboratories in endovascular thrombectomy studies, and also expedite decision-making during DSA-based procedures.
引用
收藏
页码:521 / 525
页数:5
相关论文
共 50 条
  • [31] Automated Measurement of Vascular Calcification in Femoral Endarterectomy Patients Using Deep Learning
    Rajeoni, Alireza Bagheri
    Pederson, Breanna
    Clair, Daniel G.
    Lessner, Susan M.
    Valafar, Homayoun
    DIAGNOSTICS, 2023, 13 (21)
  • [32] An Automated Early Ischemic Stroke Detection System using CNN Deep Learning Algorithm
    Chin, Chiun-Li
    Lin, Bing-Jhang
    Wu, Guei-Ru
    Weng, Tzu-Chieh
    Yang, Cheng-Shiun
    Su, Rui-Cih
    Pan, Yu-Jen
    2017 IEEE 8TH INTERNATIONAL CONFERENCE ON AWARENESS SCIENCE AND TECHNOLOGY (ICAST), 2017, : 368 - 372
  • [33] Spatio-temporal deep learning for automatic detection of intracranial vessel perforation in digital subtraction angiography during endovascular thrombectomy
    Su, Ruisheng
    van der Sluijs, Matthijs
    Cornelissen, Sandra A. P.
    Lycklama, Geert
    Hofmeijer, Jeannette
    Majoie, Charles B. L. M.
    van Doormaal, Pieter Jan
    van Es, Adriaan C. G. M.
    Ruijters, Danny
    Niessen, Wiro J.
    van der Lugt, Aad
    van Walsum, Theo
    MEDICAL IMAGE ANALYSIS, 2022, 77
  • [34] Automatically Predicting Modified Treatment in Cerebral Ischemia Scores From Patient Digital Subtraction Angiography Using Deep Learning
    Lall, Ayush
    Scalzo, Fabien
    Ullman, Henrik
    Liebeskind, David S.
    Chien, Aichi
    STROKE, 2021, 52
  • [35] Estimation of intra-arterial chemotherapy distribution to the retina in pediatric retinoblastoma patients using quantitative digital subtraction angiography
    Kondapavulur, Sravani
    Cooke, Daniel L.
    Kao, Andrew
    Amans, Matthew R.
    Alexander, Matthew
    Darflinger, Robert
    Dowd, Christopher F.
    Higashida, Randall T.
    Damato, Bertil
    Halbach, Van V.
    Matthay, Katherine K.
    Hetts, Steven W.
    INTERVENTIONAL NEURORADIOLOGY, 2018, 24 (02) : 214 - 219
  • [36] RETRACTED: Digital Subtraction Angiography Image Features under the Deep Learning Algorithm in Cardiovascular Interventional Treatment and Nursing for Vascular Restenosis (Retracted Article)
    Zhao, Yuqin
    Zeng, Qingting
    Li, Jingjing
    Jiang, Xia
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2022, 2022
  • [37] Automated Final Lesion Segmentation in Posterior Circulation Acute Ischemic Stroke Using Deep Learning
    Zoetmulder, Riaan
    Konduri, Praneeta R.
    Obdeijn, Iris, V
    Gavves, Efstratios
    Isgum, Ivana
    Majoie, Charles B. L. M.
    Dippel, Diederik W. J.
    Roos, Yvo B. W. E. M.
    Goyal, Mayank
    Mitchell, Peter J.
    Campbell, Bruce C., V
    Lopes, Demetrius K.
    Reimann, Gernot
    Jovin, Tudor G.
    Saver, Jeffrey L.
    Muir, Keith W.
    White, Phil
    Bracard, Serge
    Chen, Bailiang
    Brown, Scott
    Schonewille, Wouter J.
    van der Hoeven, Erik
    Puetz, Volker
    Marquering, Henk A.
    DIAGNOSTICS, 2021, 11 (09)
  • [38] Automated detection and classification of coronary atherosclerotic plaques on coronary CT angiography using deep learning algorithm
    Liang, Jing
    Zhou, Kefeng
    Chu, Michael P.
    Wang, Yujie
    Yang, Gang
    Li, Hui
    Chen, Wenping
    Yin, Kejie
    Xue, Qiucang
    Zheng, Chao
    Gu, Rong
    Li, Qiaoling
    Chen, Xingbiao
    Sheng, Zhihong
    Chu, Baocheng
    Mu, Dan
    Yu, Hongming
    Zhang, Bing
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2024, 14 (06) : 3837 - 3850
  • [39] Automated Prediction of Ischemic Brain Tissue Fate from Multiphase Computed Tomographic Angiography in Patients with Acute Ischemic Stroke Using Machine Learning
    Qiu, Wu
    Kuang, Hulin
    Ospel, Johanna
    Hill, Michael D.
    Demchuk, Andrew
    Goyal, Mayank
    Menon, Bijoy
    JOURNAL OF STROKE, 2021, 23 (02) : 234 - +
  • [40] Automated Detection of B Cell and T Cell Acute Lymphoblastic Leukaemia Using Deep Learning
    Anilkumar, K. K.
    Manoj, V. J.
    Sagi, T. M.
    IRBM, 2022, 43 (05) : 405 - 413