A deep learning method to identify and localize large-vessel occlusions from cerebral digital subtraction angiography

被引:0
|
作者
Warman, Roshan [1 ]
Warman, PranavI. [2 ]
Warman, Anmol [3 ]
Bueso, Tulio [4 ]
Ota, Riichi [4 ]
Windisch, Thomas [4 ,5 ]
Neves, Gabriel [6 ]
机构
[1] Univ Penn, Perelman Sch Med, Philadelphia, PA USA
[2] Duke Univ, Sch Med, Durham, NC USA
[3] Johns Hopkins Univ, Sch Med, Baltimore, MD USA
[4] Texas Tech Univ Hlth Sci Ctr, Dept Neurol, Lubbock, TX USA
[5] Covenant Hlth, Lubbock, TX USA
[6] Washington Univ, Dept Neurol, Sect Neurocrit Care, Sch Med St Louis, 660 S Euclid Ave,CB 8111, St. Louis, MO 63110 USA
关键词
angiogram; artificial intelligence; stroke; thrombectomy; vascular;
D O I
10.1111/jon.13193
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background and purposeAn essential step during endovascular thrombectomy is identifying the occluded arterial vessel on a cerebral digital subtraction angiogram (DSA). We developed an algorithm that can detect and localize the position of occlusions in cerebral DSA.MethodsWe retrospectively collected cerebral DSAs from a single institution between 2018 and 2020 from 188 patients, 86 of whom suffered occlusions of the M1 and proximal M2 segments. We trained an ensemble of deep-learning models on fewer than 60 large-vessel occlusion (LVO)-positive patients. We evaluated the model on an independent test set and evaluated the truth of its predicted localizations using Intersection over Union and expert review.ResultsOn an independent test set of 166 cerebral DSA frames with an LVO prevalence of 0.19, the model achieved a specificity of 0.95 (95% confidence interval [CI]: 0.90, 0.99), a precision of 0.7450 (95% CI: 0.64, 0.88), and a sensitivity of 0.76 (95% CI: 0.66, 0.91). The model correctly localized the LVO in at least one frame in 13 of the 14 LVO-positive patients in the test set. The model achieved a precision of 0.67 (95% CI: 0.52, 0.79), recall of 0.69 (95% CI: 0.46, 0.81), and a mean average precision of 0.75 (95% CI: 0.56, 0.91).ConclusionThis work demonstrates that a deep learning strategy using a limited dataset can generate effective representations used to identify LVOs. Generating an expanded and more complete dataset of LVOs with obstructed LVOs is likely the best way to improve the model's ability to localize LVOs.
引用
收藏
页码:366 / 375
页数:10
相关论文
共 50 条
  • [21] Computed tomography angiography-based deep learning method for treatment selection and infarct volume prediction in anterior cerebral circulation large vessel occlusion
    Hokkinen, Lasse
    Makela, Teemu
    Savolainen, Sauli
    Kangasniemi, Marko
    ACTA RADIOLOGICA OPEN, 2021, 10 (11)
  • [22] A New Deep Neural Segmentation Network for Cerebral Aneurysms in 2D Digital Subtraction Angiography
    Kashyap, Satyananda
    Bulu, Hakan
    Jadhav, Ashutosh
    Dholakia, Ronak
    Liu, Amon Y.
    Rangwala, Hussain
    Patterson, William R.
    Moradi, Mehdi
    MEDICAL IMAGING 2022: IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING, 2022, 12034
  • [23] Segmentation of Arteriovenous Malformations Nidus and Vessel in Digital Subtraction Angiography Images Based on an Iterative Thresholding Method
    Lian, Yuxi
    Wang, Yuanyuan
    Yu, Jinhua
    Guo, Yi
    Chen, Liang
    2015 8TH INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS (BMEI), 2015, : 111 - 115
  • [24] Do Prior Iodine Contrast Injections Affect Cerebral Blood Flow Measurement on CT Perfusion Studies of Patients with Large-Vessel Occlusions?
    Amukotuwa, S. A.
    Bammer, R.
    Dehkharghani, S.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2021, 42 (08) : E56 - E57
  • [25] Deep Learning-Based Digital Subtraction Angiography Characteristics in Nursing of Maintenance Hemodialysis Patients
    Mi, Jinyan
    CONTRAST MEDIA & MOLECULAR IMAGING, 2022, 2022
  • [26] Time-resolved Vessel-selective Digital Subtraction MR Angiography of the Cerebral Vasculature with Arterial Spin Labeling
    Robson, Philip M.
    Dai, Weiying
    Shankaranarayanan, Ajit
    Rofsky, Neil M.
    Alsop, David C.
    RADIOLOGY, 2010, 257 (02) : 507 - 515
  • [27] Deep Learning Based Software to Identify Large Vessel Occlusion on Noncontrast Computed Tomography
    Olive-Gadea, Marta
    Crespo, Carlos
    Granes, Cristina
    Hernandez-Perez, Maria
    Perez de la Ossa, Natalia
    Laredo, Carlos
    Urra, Xabier
    Carlos Soler, Juan
    Soler, Alexander
    Puyalto, Paloma
    Cuadras, Patricia
    Marti, Cristian
    Ribo, Marc
    STROKE, 2020, 51 (10) : 3133 - 3137
  • [28] Quantitative flow measurement by digital subtraction angiography in cerebral carotid stenosis using optical flow method
    Huang, Tzung-Chi
    Wu, Tung-Hsin
    Lin, Yang-Hsien
    Guo, Wan-Yuo
    Huang, Wei-Chien
    Lin, Chung-Jung
    JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2013, 21 (02) : 227 - 235
  • [29] Deep-learning based detection of vessel occlusions on CT-angiography in patients with suspected acute ischemic stroke
    Brugnara, Gianluca
    Baumgartner, Michael
    Scholze, Edwin David
    Deike-Hofmann, Katerina
    Kades, Klaus
    Scherer, Jonas
    Denner, Stefan
    Meredig, Hagen
    Rastogi, Aditya
    Mahmutoglu, Mustafa Ahmed
    Ulfert, Christian
    Neuberger, Ulf
    Schoenenberger, Silvia
    Schlamp, Kai
    Bendella, Zeynep
    Pinetz, Thomas
    Schmeel, Carsten
    Wick, Wolfgang
    Ringleb, Peter A.
    Floca, Ralf
    Moehlenbruch, Markus
    Radbruch, Alexander
    Bendszus, Martin
    Maier-Hein, Klaus
    Vollmuth, Philipp
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [30] Maskless 2-Dimensional Digital Subtraction Angiography Generation Model for Abdominal Vasculature using Deep Learning
    Yonezawa, Hiroki
    Ueda, Daiju
    Yamamoto, Akira
    Kageyama, Ken
    Walston, Shannon Leigh
    Nota, Takehito
    Murai, Kazuki
    Ogawa, Satoyuki
    Sohgawa, Etsuji
    Jogo, Atsushi
    Kabata, Daijiro
    Miki, Yukio
    JOURNAL OF VASCULAR AND INTERVENTIONAL RADIOLOGY, 2022, 33 (07) : 845 - +