A deep learning method to identify and localize large-vessel occlusions from cerebral digital subtraction angiography

被引:0
|
作者
Warman, Roshan [1 ]
Warman, PranavI. [2 ]
Warman, Anmol [3 ]
Bueso, Tulio [4 ]
Ota, Riichi [4 ]
Windisch, Thomas [4 ,5 ]
Neves, Gabriel [6 ]
机构
[1] Univ Penn, Perelman Sch Med, Philadelphia, PA USA
[2] Duke Univ, Sch Med, Durham, NC USA
[3] Johns Hopkins Univ, Sch Med, Baltimore, MD USA
[4] Texas Tech Univ Hlth Sci Ctr, Dept Neurol, Lubbock, TX USA
[5] Covenant Hlth, Lubbock, TX USA
[6] Washington Univ, Dept Neurol, Sect Neurocrit Care, Sch Med St Louis, 660 S Euclid Ave,CB 8111, St. Louis, MO 63110 USA
关键词
angiogram; artificial intelligence; stroke; thrombectomy; vascular;
D O I
10.1111/jon.13193
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background and purposeAn essential step during endovascular thrombectomy is identifying the occluded arterial vessel on a cerebral digital subtraction angiogram (DSA). We developed an algorithm that can detect and localize the position of occlusions in cerebral DSA.MethodsWe retrospectively collected cerebral DSAs from a single institution between 2018 and 2020 from 188 patients, 86 of whom suffered occlusions of the M1 and proximal M2 segments. We trained an ensemble of deep-learning models on fewer than 60 large-vessel occlusion (LVO)-positive patients. We evaluated the model on an independent test set and evaluated the truth of its predicted localizations using Intersection over Union and expert review.ResultsOn an independent test set of 166 cerebral DSA frames with an LVO prevalence of 0.19, the model achieved a specificity of 0.95 (95% confidence interval [CI]: 0.90, 0.99), a precision of 0.7450 (95% CI: 0.64, 0.88), and a sensitivity of 0.76 (95% CI: 0.66, 0.91). The model correctly localized the LVO in at least one frame in 13 of the 14 LVO-positive patients in the test set. The model achieved a precision of 0.67 (95% CI: 0.52, 0.79), recall of 0.69 (95% CI: 0.46, 0.81), and a mean average precision of 0.75 (95% CI: 0.56, 0.91).ConclusionThis work demonstrates that a deep learning strategy using a limited dataset can generate effective representations used to identify LVOs. Generating an expanded and more complete dataset of LVOs with obstructed LVOs is likely the best way to improve the model's ability to localize LVOs.
引用
收藏
页码:366 / 375
页数:10
相关论文
共 50 条
  • [31] Abstract: Deep Learning-based Detection of Vessel Occlusions on CT-Angiography in Patients with Suspected Acute Ischemic Stroke
    Brugnara, Gianluca
    Baumgartner, Michael
    Scholze, Edwin D.
    Deike-Hofmann, Katerina
    Kades, Klaus
    Scherer, Jonas
    Denner, Stefan
    Meredig, Hagen
    Rastogi, Aditya
    Mahmutoglu, Mustafa A.
    Ulfert, Christian
    Neuberger, Ulf
    Schoenenberger, Silvia
    Schlamp, Kai
    Bendella, Zeynep
    Pinetz, Thomas
    Schmeel, Carsten
    Wick, Wolfgang
    Ringleb, Peter A.
    Floca, Ralf
    Moehlenbruch, Markus
    Radbruch, Alexander
    Bendszus, Martin
    Maier-Hein, Klaus
    Vollmuth, Philipp
    BILDVERARBEITUNG FUR DIE MEDIZIN 2024, 2024, : 9 - 9
  • [32] Quantification of Blood Flow in Internal Cerebral Artery by Optical Flow Method on Digital Subtraction Angiography in Comparison with Time-Of-Flight Magnetic Resonance Angiography
    Huang, Tzung-Chi
    Chang, Chih-Kai
    Liao, Chun-Han
    Ho, Yung-Jen
    PLOS ONE, 2013, 8 (01):
  • [33] Detection and Measurement of Intracranial Aneurysm Compared between Magnetic Resonance Intracranial Black Blood Vessel Imaging and Gold Standard Cerebral Digital Subtraction Angiography
    Songsaeng, Dittapong
    Sakarunchai, Ittichai
    Mongkolnaowarat, Sakun
    Harmontree, Sasithorn
    Pornpunyawut, Prapaporn
    Suwanbundit, Anek
    Zhang, Shuo
    Krings, Timo
    JOURNAL OF NEUROSCIENCES IN RURAL PRACTICE, 2020, 11 (04) : 545 - 551
  • [34] Deep Learning-Based Intraoperative Stent Graft Segmentation on Completion Digital Subtraction Angiography During Endovascular Aneurysm Repair
    Kappe, Kaj O.
    Smorenburg, Stefan P. M.
    Hoksbergen, Arjan W. J.
    Wolterink, Jelmer M.
    Yeung, Kak Khee
    JOURNAL OF ENDOVASCULAR THERAPY, 2023, 30 (06) : 822 - 827
  • [35] Deep learning for cerebral angiography segmentation from non-contrast computed tomography
    Klimont, Michal
    Oronowicz-Jaskowiak, Agnieszka
    Flieger, Mateusz
    Rzeszutek, Jacek
    Juszkat, Robert
    Jonczyk-Potoczna, Katarzyna
    PLOS ONE, 2020, 15 (07):
  • [36] Stroke severity and incidence of acute large vessel occlusions in patients with hyper-acute cerebral ischemia: results from a prospective cohort study based on CT-angiography (CTA)
    Hansen, C. K.
    Christensen, A.
    Ovesen, C.
    Havsteen, I.
    Christensen, H.
    INTERNATIONAL JOURNAL OF STROKE, 2015, 10 (03) : 336 - 342
  • [37] Evaluation of the contribution of individual arteries to the cerebral blood supply in patients with Moyamoya angiopathy: comparison of vessel-encoded arterial spin labeling and digital subtraction angiography
    Zerweck, Leonie
    Pohmann, Rolf
    Klose, Uwe
    Martirosian, Petros
    Haas, Patrick
    Ernemann, Ulrike
    Khan, Nadia
    Roder, Constantin
    Hauser, Till-Karsten
    Hennersdorf, Florian
    NEURORADIOLOGY, 2024, 66 (07) : 1131 - 1140
  • [38] Deep learning for prediction of post-thrombectomy outcomes based on admission CT angiography in large vessel occlusion stroke
    Sommer, Jakob
    Dierksen, Fiona
    Zeevi, Tal
    Tran, Anh Tuan
    Avery, Emily W.
    Mak, Adrian
    Malhotra, Ajay
    Matouk, Charles C.
    Falcone, Guido J.
    Torres-Lopez, Victor
    Aneja, Sanjey
    Duncan, James
    Sansing, Lauren H.
    Sheth, Kevin N.
    Payabvash, Seyedmehdi
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2024, 7
  • [39] InterNet: Detection of Active Abdominal Arterial Bleeding Using Emergency Digital Subtraction Angiography Imaging With Two-Stage Deep Learning
    Min, Xiangde
    Feng, Zhaoyan
    Gao, Junfeng
    Chen, Shu
    Zhang, Peipei
    Fu, Tianyu
    Shen, Hong
    Wang, Nan
    FRONTIERS IN MEDICINE, 2022, 9
  • [40] RETRACTED: Digital Subtraction Angiography Image Features under the Deep Learning Algorithm in Cardiovascular Interventional Treatment and Nursing for Vascular Restenosis (Retracted Article)
    Zhao, Yuqin
    Zeng, Qingting
    Li, Jingjing
    Jiang, Xia
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2022, 2022