GLOBAL MULTIPLICITY FOR PARAMETRIC ANISOTROPIC NEUMANN (p, q)-EQUATIONS

被引:0
|
作者
Papageorgiou, Nikolaos S. [1 ]
Radulescu, Vicentiu D. [2 ,3 ,4 ]
Repovs, Dusan D. [5 ,6 ,7 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
[2] AGH Univ Sci & Technol, Fac Appl Math, Al Mickiewicza 30, PL-30059 Krakow, Poland
[3] Univ Craiova, Dept Math, Craiova 200585, Romania
[4] Brno Univ, Fac Elect Engn & Commun, Tech 3058-10, Brno 61600, Czech Republic
[5] Univ Ljubljana, Fac Educ, Ljubljana 1000, Slovenia
[6] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia
[7] Univ Ljubljana, Inst Math Phys & Mech, Ljubljana 1000, Slovenia
关键词
Anisotropic operator; superlinear reaction; positive and nodal solutions; critical groups; KIRCHHOFF-TYPE PROBLEMS; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; SOBOLEV SPACES; EXISTENCE;
D O I
10.12775/TMNA.2022.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a Neumann boundary value problem driven by the anisotropic (p, q)-Laplacian plus a parametric potential term. The reaction is "superlinear". We prove a global (with respect to the parameter) multiplicity result for positive solutions. Also, we show the existence of a minimal positive solution and finally, we produce a nodal solution.
引用
收藏
页码:393 / 422
页数:30
相关论文
共 50 条
  • [41] Multiplicity of Solutions for Neumann Problems for Semilinear Elliptic Equations
    An, Yu-Cheng
    Suo, Hong-Min
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [42] MULTIPLICITY OF WEAK SOLUTIONS FOR A (P(X), Q(X))-KIRCHHOFF EQUATION WITH NEUMANN BOUNDARY CONDITIONS
    Ahmed, A.
    Vall, Mohamed Saad Bouh Elemine
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (04): : 2441 - 2465
  • [43] Existence and multiplicity of solutions for nonlocal p(x)-Laplacian equations with nonlinear Neumann boundary conditions
    Guo, Erlin
    Zhao, Peihao
    BOUNDARY VALUE PROBLEMS, 2012, 2012
  • [44] Existence and multiplicity of solutions for nonlocal p(x)-Laplacian equations with nonlinear Neumann boundary conditions
    Erlin Guo
    Peihao Zhao
    Boundary Value Problems, 2012 (1)
  • [45] Positive solutions for parametric (p(z), q(z))-equations
    Gasinski, Leszek
    Krech, Ireneusz
    Papageorgiou, Nikolaos S.
    OPEN MATHEMATICS, 2020, 18 : 1076 - 1096
  • [46] Positive solutions for parametric singular Dirichlet ( p, q ) -equations
    Papageorgiou, Nikolaos S.
    Vetro, Calogero
    Zhang, Youpei
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 198 (198)
  • [47] Anisotropic and p, q-nonlinear partial differential equations
    Paolo Marcellini
    Rendiconti Lincei. Scienze Fisiche e Naturali, 2020, 31 : 295 - 301
  • [48] Anisotropic Singular Neumann Equations with Unbalanced Growth
    Nikolaos S. Papageorgiou
    Vicenţiu D. Rădulescu
    Dušan D. Repovš
    Potential Analysis, 2022, 57 : 55 - 82
  • [49] Anisotropic Singular Neumann Equations with Unbalanced Growth
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Repovs, Dusan D.
    POTENTIAL ANALYSIS, 2022, 57 (01) : 55 - 82
  • [50] Constant sign and nodal solutions for parametric anisotropic (p, 2)-equations
    Papageorgiou, Nikolaos S.
    Repovs, Dusan D.
    Vetro, Calogero
    APPLICABLE ANALYSIS, 2023, 102 (04) : 1059 - 1076